Metabolism/ja: Difference between revisions

Metabolism/ja
Created page with "外因性制御の例として非常によく理解されているのは、インスリンというホルモンによるグルコース代謝の調節である。インスリンは血中グルコース濃度の上昇に反応して産生される。このホルモンが細胞上のインスリン受容体に結合すると、プロテインキナーゼのカスケードが活性化され、..."
Tags: Mobile edit Mobile web edit
Created page with "==進化== {{Anchor|Evolution}} {{further/ja|Proto-metabolism/ja|Molecular evolution/ja|Phylogenetics/ja}} thumb|right|upright=1.8|生命の3つの[[Domain (biology)/ja|領域すべての生物の共通祖先を示す進化樹細菌は青、真核生物は赤、古細菌は緑で着色されている。ツリーの周囲には含まれるの相対的..."
Line 219: Line 219:
外因性制御の例として非常によく理解されているのは、[[insulin/ja|インスリン]]というホルモンによるグルコース代謝の調節である。インスリンは[[blood sugar/ja|血中グルコース濃度]]の上昇に反応して産生される。このホルモンが細胞上の[[insulin receptor/ja|インスリン受容体]]に結合すると、[[protein kinase/ja|プロテインキナーゼ]]のカスケードが活性化され、細胞がグルコースを取り込み、脂肪酸や[[glycogen/ja|グリコーゲン]]などの貯蔵分子に変換する。グリコーゲンの代謝は、グリコーゲンを分解する酵素である[[phosphorylase/ja|ホスホリラーゼ]]と、グリコーゲンを作る酵素である[[glycogen synthase/ja|グリコーゲン合成酵素]]の活性によって制御されている。これらの酵素は相互に制御されており、リン酸化はグリコーゲン合成酵素を阻害するが、ホスホリラーゼは活性化する。インスリンは[[phosphatase/ja|タンパク質ホスファターゼ]]を活性化し、これらの酵素のリン酸化の減少をもたらすことによってグリコーゲン合成を引き起こす。
外因性制御の例として非常によく理解されているのは、[[insulin/ja|インスリン]]というホルモンによるグルコース代謝の調節である。インスリンは[[blood sugar/ja|血中グルコース濃度]]の上昇に反応して産生される。このホルモンが細胞上の[[insulin receptor/ja|インスリン受容体]]に結合すると、[[protein kinase/ja|プロテインキナーゼ]]のカスケードが活性化され、細胞がグルコースを取り込み、脂肪酸や[[glycogen/ja|グリコーゲン]]などの貯蔵分子に変換する。グリコーゲンの代謝は、グリコーゲンを分解する酵素である[[phosphorylase/ja|ホスホリラーゼ]]と、グリコーゲンを作る酵素である[[glycogen synthase/ja|グリコーゲン合成酵素]]の活性によって制御されている。これらの酵素は相互に制御されており、リン酸化はグリコーゲン合成酵素を阻害するが、ホスホリラーゼは活性化する。インスリンは[[phosphatase/ja|タンパク質ホスファターゼ]]を活性化し、これらの酵素のリン酸化の減少をもたらすことによってグリコーゲン合成を引き起こす。


<div lang="en" dir="ltr" class="mw-content-ltr">
==進化==
==Evolution==
{{Anchor|Evolution}}
{{further|Proto-metabolism|Molecular evolution|Phylogenetics}}
{{further/ja|Proto-metabolism/ja|Molecular evolution/ja|Phylogenetics/ja}}
[[File:Tree of life int.svg|thumb|right|upright=1.8|[[Phylogenetic tree|Evolutionary tree]] showing the common ancestry of organisms from all three [[Domain (biology)|domains]] of life. [[Bacteria]] are colored blue, [[eukaryote]]s red, and [[archaea]] green. Relative positions of some of the [[phylum|phyla]] included are shown around the tree.]]
[[File:Tree of life int.svg|thumb|right|upright=1.8|生命の3つの[[Domain (biology)/ja|領域]]すべての生物の共通祖先を示す[[Phylogenetic tree/ja|進化樹]][[Bacteria/ja|細菌]]は青、[[eukaryote/ja|真核生物]]は赤、[[archaea/ja|古細菌]]は緑で着色されている。ツリーの周囲には含まれる[[phylum/ja|]]の相対的な位置が示されている。]]
The central pathways of metabolism described above, such as glycolysis and the citric acid cycle, are present in all [[Three-domain system|three domains]] of living things and were present in the [[last universal common ancestor]]. This universal ancestral cell was [[prokaryote|prokaryotic]] and probably a [[methanogen]] that had extensive amino acid, nucleotide, carbohydrate and lipid metabolism. The retention of these ancient pathways during later [[evolution]] may be the result of these reactions having been an optimal solution to their particular metabolic problems, with pathways such as glycolysis and the citric acid cycle producing their end products highly efficiently and in a minimal number of steps. The first pathways of enzyme-based metabolism may have been parts of [[purine]] nucleotide metabolism, while previous metabolic pathways were a part of the ancient [[RNA world hypothesis|RNA world]].
解糖やクエン酸サイクルのような上記の代謝の中心経路は、全ての[[Three-domain system/ja|3ドメインthree domain]]の生物に存在し、[[last universal common ancestor/ja|最後の普遍的共通祖先]]にも存在した。
</div>
この普遍的祖先細胞は[[prokaryote/ja|原核生物]]であり、おそらく広範なアミノ酸、ヌクレオチド、炭水化物、脂質の代謝を持つ[[methanogen/ja|メタン菌]]であった。
後の[[evolution/ja|進化]]において、これらの古代の経路が保持されたのは、解糖やクエン酸サイクルなどの経路が、非常に効率よく、最小限のステップ数で最終生成物を生成することで、これらの反応が特定の代謝上の問題に対する最適な解決策となった結果かもしれない。
酵素に基づく代謝の最初の経路は[[purine/ja|プリン]]ヌクレオチド代謝の一部であったかもしれないし、それ以前の代謝経路は古代の[[RNA world hypothesis/ja|RNA世界]]の一部であったかもしれない。


<div lang="en" dir="ltr" class="mw-content-ltr">
<div lang="en" dir="ltr" class="mw-content-ltr">