トリグリセリド
Triglyceride/ja
食品に含まれる脂肪の種類 |
---|
コンポーネント |
製造脂肪 |
トリグリセリド(TG、triacylglycerol、TAG、またはtriacylglyceride)は、グリセロールと3つの脂肪酸(tri-とグリセリド'から)から誘導されるエステルである。 トリグリセリドはヒトをはじめとする脊椎動物の体脂肪や植物性脂肪の主成分である。 これらはまた、血液中に存在しており、脂肪組織からの脂肪と肝臓からの血糖の双方向の転送を可能にし、また、人間の皮脂の主要な成分でもある。
トリグリセリドには多くの種類が存在する。 ある特定の分類は、飽和および不飽和タイプに焦点を当てている。飽和脂肪にはC=C基がないが、不飽和脂肪には1つ以上のC=C基がある。不飽和脂肪は飽和脂肪よりも融点が低い傾向があり、その結果、室温で液体であることが多い。
化学構造

3つの脂肪酸の置換基は同じでもよいが、通常は異なる。 多くのトリグリセリドが知られているのは、多くの脂肪酸が知られており、その組み合わせがさらに多いからである。天然に存在するトリグリセリド中の脂肪酸の鎖長は様々であるが、多くは16、18、または20個の炭素原子を含み、長鎖トリグリセリドと定義され、中鎖トリグリセリドはより短い脂肪酸を含む。動物は偶数番目の脂肪酸を合成するが、細菌は奇数番目と分岐鎖の脂肪酸を合成する能力を持っている。その結果、反芻動物の動物脂肪には、ルーメン内のバクテリアの働きにより、15などの奇数脂肪酸が含まれる。 多くの脂肪酸は不飽和であり、中には多価不飽和のものもある(例えば、リノール酸に由来するもの)。
ほとんどの天然脂肪は、個々のトリグリセリドの複雑な混合物を含んでいる。不均一であるため、幅広い温度範囲で溶ける。ココアバターは、パルミチン酸、オレイン酸、ステアリン酸がそれぞれグリセロールの1-、2-、3-位にある。
最も単純なトリグリセリドは、3つの脂肪酸が同一であるものである。それらの名前は脂肪酸を示す:ステアリン酸に由来するステアリン、オレイン酸に由来するトリオレイン、パルミチン酸に由来するパルミチンなど。 これらの化合物は、α、β、β′という3つの結晶形(多形)で得ることができ、3つの結晶形は融点が異なる。
異なる脂肪酸を含むトリグリセリドは混合トリグリセリドと呼ばれる。グリセロール上の1番目と3番目の脂肪酸が異なる場合、混合トリグリセリドはキラルである。
生合成
トリグリセリドは、グリセロールと3つの脂肪酸との縮合反応から得られるトリエステルである。その生成は以下の全体式で要約できる:
- CH(OH)(CH
2OH)
2 + RCOOH + R'COOH + R"COOH → RC(O)OCH
2−CH(OC(O)R')−CH
2C(O)OR" + 3H
2O
自然界では、トリグリセリドの形成はランダムではなく、特定の脂肪酸がグリセロールのヒドロキシル官能基と選択的に縮合する。動物性脂肪は通常、炭素原子1と3に不飽和脂肪酸残基を持つ。非ランダム脂肪の極端な例は、ココアバター(前述)とラードであり、炭素2にパルミチン酸、炭素1と3にオレイン酸を持つトリグリセリドを約20%含む。生合成の初期段階はグリセロール-1-リン酸の形成である:
- CH(OH)(CH
2OH)
2 + H
2PO−
4 → HOCH
2−CH(OH)−CH
2−OPO
3H−
+ H
2O
このジオールは、脂肪酸の補酵素A誘導体であるRC(O)S–CoAと選択的に反応するため、このリン酸エステルの3つの酸素原子は区別され、トリグリセリドの位置特異的形成の舞台となる:
- HOCH
2−CH(OH)−CH
2−OPO
3H−
+ RC(O)S−CoA + R'C(O)S−CoA → RC(O)O−CH
2−CH(−OC(O)R')−CH
2−OPO
3H−
+ 2HS−CoA
その後、リン酸エステル結合が加水分解され、第3の脂肪酸エステルが導入される:
- RC(O)O−CH
2−CH(−OC(O)R')−CH
2−OPO
3H−
+ H
2O → RC(O)O−CH
2−CH(−OC(O)R')−CH
2OH + H
2PO−
4
- RC(O)O−CH
2−CH(−OC(O)R')−CH
2OH + R"C(O)S−CoA → RC(O)O−CH
2−CH(−OC(O)R')−CH
2−OC(O)R" + HS−CoA
命名法
一般的な脂肪の名称
脂肪は通常、オリーブ油、タラ肝油、シアバター、尾脂のように、その供給源にちなんで命名されるか、または伝統的な独自の名称を持つ(バター、ラード、ギー、マーガリンなど)。これらの名称の中には、適切な脂肪以外の他の成分を相当量含む製品を指すものもある。
Chemical fatty acid names
Triglycerides are then commonly named as esters of those acids, as in glyceryl 1,2-dioleate 3-palmitate, the name for a brood pheromone of the honey bee. Where the fatty acid residues in a triglyceride are all the same, names like olein (for glyceryl trioleate) and palmitin (for glyceryl tripalmitate) are common.
IUPAC
In the International Union of Pure and Applied Chemistry's (IUPAC's) general chemical nomenclature for organic compounds, any organic structure can be named by starting from its corresponding hydrocarbon and then specifying differences so as to describe its structure completely. For fatty acids, for example, the position and orientation of carbon-carbon double bonds is specified counting from the carboxyl functional group. Thus, oleic acid is formally named (9Z)-octadec-9-enoic acid, which describes that the compound has:
- an 18 carbon chain ("octadec-") with the carbon of the carboxyl ("-oic acid") given the number 1
- all carbon-carbon bonds are single except for the double bond then joins carbon 9 ("9-en") to carbon 10
- the chain connects to each of the carbons of the double bond on the same side (hence, cis, or "(9Z)" - the "Z" being an abbreviation for the German word zusammen, meaning together).
IUPAC nomenclature can also handle branched chains and derivatives where hydrogen atoms are replaced by other chemical groups. Triglycerides take formal IUPAC names according to the rule governing naming of esters. For example, the formal name propane-1,2,3-tryl 1,2-bis((9Z)-octadec-9-enoate) 3-(hexadecanoate) applies to the pheromone informally named as glyceryl 1,2-dioleate-3-palmitate, and also known by other common names including 1,2-dioleoyl-3-palmitoylglycerol, glycerol dioleate palmitate, and 3-palmito-1,2-diolein.
Fatty acid code
A notation specific for fatty acids with unbranched chain, that is as precise as the IUPAC one but easier to parse, is a code of the form "{N}:{D} cis-{CCC} trans-{TTT}", where {N} is the number of carbons (including the carboxyl one), {D} is the number of double bonds, {CCC} is a list of the positions of the cis double bonds, and {TTT} is a list of the positions of the trans bonds. Either or both cis and trans lists and their labels are omitted if there are no multiple bonds with that geometry. For example, the codes for stearic, oleic, elaidic, and vaccenic acids are "18:0", "18:1 cis-9", "18:1 trans-9", and "18:1 trans-11", respectively. Catalpic acid, (9E,11E,13Z)-octadeca-9,11,13-trienoic acid according to IUPAC nomenclature, has the code "18:3 cis-13 trans-9,11".
Saturated and unsaturated fats
For human nutrition, an important classification of fats is based on the number and position of double bonds in the constituent fatty acids. Saturated fat has a predominance of saturated fatty acids, without any double bonds, while unsaturated fat has predominantly unsaturated acids with double bonds. (The names refer to the fact that each double bond means two fewer hydrogen atoms in the chemical formula. Thus, a saturated fatty acid, having no double bonds, has the maximum number of hydrogen atoms for a given number of carbon atoms – that is, it is "saturated" with hydrogen atoms.)
Unsaturated fatty acids are further classified into monounsaturated (MUFAs), with a single double bond, and polyunsaturated (PUFAs), with two or more. Natural fats usually contain several different saturated and unsaturated acids, even on the same molecule. For example, in most vegetable oils, the saturated palmitic (C16:0) and stearic (C18:0) acid residues are usually attached to positions 1 and 3 (sn1 and sn3) of the glycerol hub, whereas the middle position (sn2) is usually occupied by an unsaturated one, such as oleic (C18:1, ω–9) or linoleic (C18:2, ω–6).)
![]() |
Stearic acid (saturated, C18:0) |
![]() |
Palmitoleic acid (mono-unsaturated, C16:1 cis-9, omega-7) |
![]() |
Oleic acid (mono-unsaturated, C18:1 cis-9, omega-9) |
![]() |
α-Linolenic acid (polyunsaturated, C18:3 cis-9,12,15, omega-3) |
![]() |
γ-Linolenic acid (polyunsaturated, C18:3 cis-6,9,12, omega-6) |
While it is the nutritional aspects of polyunsaturated fatty acids that are generally of greatest interest, these materials also have non-food applications. They include the drying oils, such as linseed (flax seed), tung, poppyseed, perilla, and walnut oil, which polymerize on exposure to oxygen to form solid films, and are used to make paints and varnishes.
Saturated fats generally have a higher melting point than unsaturated ones with the same molecular weight, and thus are more likely to be solid at room temperature. For example, the animal fats tallow and lard are high in saturated fatty acid content and are solids. Olive and linseed oils on the other hand are unsaturated and liquid. Unsaturated fats are prone to oxidation by air, which causes them to become rancid and inedible.
The double bonds in unsaturated fats can be converted into single bonds by reaction with hydrogen effected by a catalyst. This process, called hydrogenation, is used to turn vegetable oils into solid or semisolid vegetable fats like margarine, which can substitute for tallow and butter and (unlike unsaturated fats) can be stored indefinitely without becoming rancid. However, partial hydrogenation also creates some unwanted trans acids from cis acids.
In cellular metabolism, unsaturated fat molecules yield slightly less energy (i.e., fewer calories) than an equivalent amount of saturated fat. The heats of combustion of saturated, mono-, di-, and tri-unsaturated 18-carbon fatty acid esters have been measured as 2859, 2828, 2794, and 2750 kcal/mol, respectively; or, on a weight basis, 10.75, 10.71, 10.66, and 10.58 kcal/g – a decrease of about 0.6% for each additional double bond.
The greater the degree of unsaturation in a fatty acid (i.e., the more double bonds in the fatty acid) the more vulnerable it is to lipid peroxidation (rancidity). Antioxidants can protect unsaturated fat from lipid peroxidation.
Industrial uses
Linseed oil and related oils are important components of useful products used in oil paints and related coatings. Linseed oil is rich in di- and tri-unsaturated fatty acid components, which tend to harden in the presence of oxygen. This heat-producing hardening process is peculiar to these so-called drying oils. It is caused by a polymerization process that begins with oxygen molecules attacking the carbon backbone.
Triglycerides are also split into their components via transesterification during the manufacture of biodiesel. The resulting fatty acid esters can be used as fuel in diesel engines. The glycerin has many uses, such as in the manufacture of food and in the production of pharmaceuticals.
Staining
Staining for fatty acids, triglycerides, lipoproteins, and other lipids is done through the use of lysochromes (fat-soluble dyes). These dyes can allow the qualification of a certain fat of interest by staining the material a specific color. Some examples: Sudan IV, Oil Red O, and Sudan Black B.
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles.
こちらも参照
- ジグリセリドアシルトランスフェラーゼは、トリグリセリドを生成する酵素である。
- グリセロール-3-リン酸アシルトランスフェラーゼは、トリグリセリドの生合成の初期段階に関与する酵素である。
- ホスファチジン酸はトリグリセリドの生合成に関与している。
- Medium-chain triglycerides/ja
- Lipid profile/ja
- 脂質
- Vertical auto profile/ja
- 高トリグリセリド血症は、血液中に多量のトリグリセリドが存在する状態である。
外部リンク
- Lowering Triglycerides (EMedicineHealth.com; October 2020)