Created page with "β2としても知られるNeuroD1は、エキソサイトーシスに関与する遺伝子の発現を直接誘導することで、膵臓のβ細胞におけるインスリンのエキソサイトーシスを制御している。β2は細胞質に局在しているが、高グルコースに応答するとOGTによって糖鎖化され、Extracellular signa..."
[[MafA]] is degraded by [[proteasomes]] upon low blood [[glucose]] levels. Increased levels of [[glucose]] make an unknown protein [[glycosylated]]. This protein works as a transcription factor for [[MafA]] in an unknown manner and [[MafA]] is transported out of the cell. [[MafA]] is then translocated back into the nucleus where it binds the C1 element of the insulin promoter.
These transcription factors work synergistically and in a complex arrangement. Increased blood [[glucose]] can after a while destroy the binding capacities of these proteins, and therefore reduce the amount of insulin secreted, causing [[diabetes]]. The decreased binding activities can be mediated by [[glucose]] induced [[oxidative stress]] and [[antioxidants]] are said to prevent the decreased insulin secretion in glucotoxic pancreatic [[β cells]]. Stress signalling molecules and [[reactive oxygen species]] inhibits the insulin gene by interfering with the cofactors binding the transcription factors and the transcription factors itself.
Several [[regulatory sequence]]s in the [[Promoter (biology)|promoter]] region of the human insulin gene bind to [[transcription factor]]s. In general, the [[A-box]]es bind to [[Pdx1]] factors, [[E-box]]es bind to [[NeuroD]], C-boxes bind to [[MafA]], and [[cAMP response element]]s to [[CREB]]. There are also [[silencer (genetics)|silencers]] that inhibit transcription.
[[File:Insulin path.svg|thumb|upright=1.8|Insulin undergoes extensive posttranslational modification along the production pathway. Production and secretion are largely independent; prepared insulin is stored awaiting secretion. Both C-peptide and mature insulin are biologically active. Cell components and proteins in this image are not to scale.]]
Insulin is synthesized as an inactive precursor molecule, a 110 amino acid-long protein called "preproinsulin".<!-- Cite. Merged AA length from [[Preproinsulin]] --> Preproinsulin is [[translation (biology)|translated]] directly into the rough [[endoplasmic reticulum]] (RER), where its [[signal peptide]] is removed by [[signal peptidase]] to form "proinsulin". As the proinsulin [[protein folding|folds]], opposite ends of the protein, called the "A-chain" and the "B-chain", are fused together with three [[disulfide bond]]s. Folded proinsulin then transits through the [[Golgi apparatus]] and is packaged into specialized [[Vesicle (biology and chemistry)#Secretory vesicles|secretory vesicle]]s. In the granule, proinsulin is cleaved by [[Proprotein convertase 1|proprotein convertase 1/3]] and [[proprotein convertase 2]], removing the middle part of the protein, called the "[[C-peptide]]". Finally, [[carboxypeptidase E]] removes two pairs of amino acids from the protein's ends, resulting in active insulin – the insulin A- and B- chains, now connected with two disulfide bonds.
The resulting mature insulin is packaged inside mature granules waiting for metabolic signals (such as leucine, arginine, glucose and mannose) and [[Vagus nerve stimulation|vagal nerve stimulation]] to be exocytosed from the cell into the circulation.
Insulin and its related proteins have been shown to be produced inside the brain, and reduced levels of these proteins are linked to Alzheimer's disease.
Insulin release is stimulated also by beta-2 receptor stimulation and inhibited by alpha-1 receptor stimulation. In addition, cortisol, glucagon and growth hormone antagonize the actions of insulin during times of stress. Insulin also inhibits fatty acid release by [[hormone-sensitive lipase]] in adipose tissue.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== 構造 ==
== Structure ==
{{Anchor|Structure}}
{{See also|Insulin/IGF/Relaxin family|Insulin and its analog structure}}
{{See also/ja|Insulin/IGF/Relaxin family/ja|Insulin and its analog structure/ja}}
[[Image:InsulinMonomer.jpg|250px|thumb|'''The structure of insulin.''' The left side is a space-filling model of the insulin monomer, believed to be biologically active. [[Carbon]] is green, [[hydrogen]] white, [[oxygen]] red, and [[nitrogen]] blue. On the right side is a [[ribbon diagram]] of the insulin hexamer, believed to be the stored form. A monomer unit is highlighted with the A chain in blue and the B chain in cyan. Yellow denotes disulfide bonds, and magenta spheres are zinc ions.]]
Contrary to an initial belief that hormones would be generally small chemical molecules, as the first peptide hormone known of its structure, insulin was found to be quite large. A single protein (monomer) of human insulin is composed of 51 [[amino acid]]s, and has a [[molecular mass]] of 5808 [[Dalton (unit)|Da]]. The [[molecular formula]] of human insulin is C<sub>257</sub>H<sub>383</sub>N<sub>65</sub>O<sub>77</sub>S<sub>6</sub>. It is a combination of two peptide chains ([[protein dimer|dimer]]) named an A-chain and a B-chain, which are linked together by two [[disulfide bond]]s. The A-chain is composed of 21 amino acids, while the B-chain consists of 30 residues. The linking (interchain) disulfide bonds are formed at cysteine residues between the positions A7-B7 and A20-B19. There is an additional (intrachain) disulfide bond within the A-chain between cysteine residues at positions A6 and A11. The A-chain exhibits two α-helical regions at A1-A8 and A12-A19 which are antiparallel; while the B chain has a central α -helix (covering residues B9-B19) flanked by the disulfide bond on either sides and two β-sheets (covering B7-B10 and B20-B23).
The amino acid sequence of insulin is [[conserved sequence|strongly conserved]] and varies only slightly between species. [[Cow|Bovine]] insulin differs from human in only three [[amino acid]] residues, and [[Pig|porcine]] insulin in one. Even insulin from some species of fish is similar enough to human to be clinically effective in humans. Insulin in some invertebrates is quite similar in sequence to human insulin, and has similar physiological effects. The strong homology seen in the insulin sequence of diverse species suggests that it has been conserved across much of animal evolutionary history. The C-peptide of [[proinsulin]], however, differs much more among species; it is also a hormone, but a secondary one.
Insulin is produced and stored in the body as a hexamer (a unit of six insulin molecules), while the active form is the monomer. The hexamer is about 36000 Da in size. The six molecules are linked together as three dimeric units to form symmetrical molecule. An important feature is the presence of zinc atoms (Zn<sup>2+</sup>) on the axis of symmetry, which are surrounded by three water molecules and three histidine residues at position B10.
The hexamer is an inactive form with long-term stability, which serves as a way to keep the highly reactive insulin protected, yet readily available. The hexamer-monomer conversion is one of the central aspects of insulin formulations for injection. The hexamer is far more stable than the monomer, which is desirable for practical reasons; however, the monomer is a much faster-reacting drug because diffusion rate is inversely related to particle size. A fast-reacting drug means insulin injections do not have to precede mealtimes by hours, which in turn gives people with diabetes more flexibility in their daily schedules. Insulin can aggregate and form [[fibrillar]] interdigitated [[beta-sheet]]s. This can cause injection [[amyloidosis]], and prevents the storage of insulin for long periods.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== 機能 ==
== Function ==
{{Anchor|Function}}
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
=== 分泌 ===
=== Secretion ===
{{See also/ja|Blood glucose regulation/ja}}
{{See also|Blood glucose regulation}}
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[[islets of Langerhans/ja|ランゲルハンス島]]の[[Beta Cell/ja|ベータ細胞]]は、2つのフェーズでインスリンを放出する。第一段階の放出は、血糖値の上昇に反応して急速に引き起こされ、約10分間持続する。第二相は、糖とは無関係に引き起こされる新しく形成された小胞の持続的なゆっくりとした放出で、2~3時間でピークに達する。インスリン放出の2つの段階は、インスリン顆粒が多様な発現集団または "プール"に存在することを示唆している。インスリンのエキソサイトーシスの第一段階では、エキソサイトーシスに適した顆粒のほとんどがカルシウムの内在化後に放出される。このプールはRRP(Readily Releasable Pool)として知られている。RRP顆粒は全インスリン含有顆粒集団の0.3-0.7%を占め、細胞膜に隣接して存在する。エキソサイトーシスの第二段階において、インスリン顆粒は細胞膜への顆粒の動員を必要とし、その放出を受けるには事前の準備が必要である。従って、インスリン放出の第二段階は、顆粒が放出の準備をする速度に支配される。このプールはリザーブプール(RP)として知られている。RPはRRPよりも放出速度が遅い(RRP:18顆粒/分、RP:6顆粒/分)。第一相インスリン放出の低下は、[[type 2 diabetes/ja|2型糖尿病]]の発症を予測する最も早期に検出可能なβ細胞の欠陥であるかもしれない。第一相分泌と[[Insulin resistance/ja|インスリン感受性]]は糖尿病の独立した予測因子である。
[[Beta Cell|Beta cells]] in the [[islets of Langerhans]] release insulin in two phases. The first-phase release is rapidly triggered in response to increased blood glucose levels, and lasts about 10 minutes. The second phase is a sustained, slow release of newly formed vesicles triggered independently of sugar, peaking in 2 to 3 hours. The two phases of the insulin release suggest that insulin granules are present in diverse stated populations or "pools". During the first phase of insulin exocytosis, most of the granules predispose for exocytosis are released after the calcium internalization. This pool is known as Readily Releasable Pool (RRP). The RRP granules represent 0.3-0.7% of the total insulin-containing granule population, and they are found immediately adjacent to the plasma membrane. During the second phase of exocytosis, insulin granules require mobilization of granules to the plasma membrane and a previous preparation to undergo their release. Thus, the second phase of insulin release is governed by the rate at which granules get ready for release. This pool is known as a Reserve Pool (RP). The RP is released slower than the RRP (RRP: 18 granules/min; RP: 6 granules/min). Reduced first-phase insulin release may be the earliest detectable beta cell defect predicting onset of [[type 2 diabetes|type 2 diabetes]]. First-phase release and [[Insulin resistance|insulin sensitivity]] are independent predictors of diabetes.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
第一相放出の説明は以下の通りである:
The description of first phase release is as follows:
* Glucose enters the β-cells through the [[glucose transporters]], [[Glucose transporter|GLUT 2]]. At low blood sugar levels little glucose enters the β-cells; at high blood glucose concentrations large quantities of glucose enter these cells.
* β細胞に入ったグルコースは[[glucokinase/ja|グルコキナーゼ]]([[Hexokinase/ja#Types of mammalian hexokinase|ヘキソキナーゼIV]])によって[[glucose-6-phosphate/ja|グルコース-6-リン酸]](G-6-P)にリン酸化される。つまり、細胞内のG-6-P濃度は血糖濃度に比例したままである。
* The glucose that enters the β-cell is phosphorylated to [[glucose-6-phosphate]] (G-6-P) by [[glucokinase]] ([[Hexokinase#Types of mammalian hexokinase|hexokinase IV]]) which is not inhibited by G-6-P in the way that the hexokinases in other tissues (hexokinase I – III) are affected by this product. This means that the intracellular G-6-P concentration remains proportional to the blood sugar concentration.
* Glucose-6-phosphate enters [[Glycolysis|glycolytic pathway]] and then, via the [[pyruvate dehydrogenase]] reaction, into the [[Krebs cycle]], where multiple, high-energy [[adenosine triphosphate|ATP]] molecules are produced by the oxidation of [[acetyl CoA]] (the Krebs cycle substrate), leading to a rise in the ATP:ADP ratio within the cell.
* An increased intracellular ATP:ADP ratio closes the ATP-sensitive SUR1/[[Kir6.2]] [[potassium channel]] (see [[sulfonylurea receptor]]). This prevents potassium ions (K<sup>+</sup>) from leaving the cell by facilitated diffusion, leading to a buildup of intracellular potassium ions. As a result, the inside of the cell becomes less negative with respect to the outside, leading to the depolarization of the cell surface membrane.
* Upon [[depolarization]], voltage-gated [[calcium channels|calcium ion (Ca<sup>2+</sup>) channels]] open, allowing calcium ions to move into the cell by facilitated diffusion.
* The calcium ion concentration in the cytosol of the beta cells can also, or additionally, be increased through the activation of [[phospholipase|phospholipase C]] resulting from the binding of an extracellular [[ligand]] (hormone or neurotransmitter) to a [[G protein]]-coupled membrane receptor. Phospholipase C cleaves the membrane phospholipid, [[phosphatidyl inositol 4,5-bisphosphate]], into [[inositol 1,4,5-trisphosphate]] and [[diglyceride|diacylglycerol]]. Inositol 1,4,5-trisphosphate (IP3) then binds to receptor proteins in the plasma membrane of the [[endoplasmic reticulum]] (ER). This allows the release of Ca<sup>2+</sup> ions from the ER via IP3-gated channels, which raises the cytosolic concentration of calcium ions independently of the effects of a high blood glucose concentration. [[Parasympathetic nervous system|Parasympathetic]] stimulation of the pancreatic islets operates via this pathway to increase insulin secretion into the blood.
* The significantly increased amount of calcium ions in the cells' cytoplasm causes the release into the blood of previously synthesized insulin, which has been stored in intracellular [[secretion|secretory]] [[vesicle (biology)|vesicles]].
This is the primary mechanism for release of insulin. Other substances known to stimulate insulin release include the amino acids arginine and leucine, parasympathetic release of [[acetylcholine]] (acting via the phospholipase C pathway), [[sulfonylurea]], [[cholecystokinin]] (CCK, also via phospholipase C), and the gastrointestinally derived [[incretins]], such as [[glucagon-like peptide-1]] (GLP-1) and [[glucose-dependent insulinotropic peptide]] (GIP).
Release of insulin is strongly inhibited by [[norepinephrine]] (noradrenaline), which leads to increased blood glucose levels during stress. It appears that release of [[catecholamines]] by the [[sympathetic nervous system]] has conflicting influences on insulin release by beta cells, because insulin release is inhibited by α<sub>2</sub>-adrenergic receptors and stimulated by β<sub>2</sub>-adrenergic receptors. The net effect of [[norepinephrine]] from sympathetic nerves and [[epinephrine]] from adrenal glands on insulin release is inhibition due to dominance of the α-adrenergic receptors.
When the glucose level comes down to the usual physiologic value, insulin release from the β-cells slows or stops. If the blood glucose level drops lower than this, especially to dangerously low levels, release of hyperglycemic hormones (most prominently [[glucagon]] from islet of Langerhans alpha cells) forces release of glucose into the blood from the liver glycogen stores, supplemented by [[gluconeogenesis]] if the glycogen stores become depleted. By increasing blood glucose, the hyperglycemic hormones prevent or correct life-threatening hypoglycemia.
Evidence of impaired first-phase insulin release can be seen in the [[glucose tolerance test]], demonstrated by a substantially elevated blood glucose level at 30 minutes after the ingestion of a glucose load (75 or 100 g of glucose), followed by a slow drop over the next 100 minutes, to remain above 120 mg/100 mL after two hours after the start of the test. In a normal person the blood glucose level is corrected (and may even be slightly over-corrected) by the end of the test. An insulin spike is a 'first response' to blood glucose increase, this response is individual and dose specific although it was always previously assumed to be food type specific only.
Even during digestion, in general, one or two hours following a meal, insulin release from the pancreas is not continuous, but [[oscillates]] with a period of 3–6 minutes, changing from generating a blood insulin concentration more than about 800 [[pico-|p]] [[unit mole|mol]]/l to less than 100 pmol/L (in rats). This is thought to avoid [[receptor downregulation|downregulation]] of [[insulin receptor]]s in target cells, and to assist the liver in extracting insulin from the blood. This oscillation is important to consider when administering insulin-stimulating medication, since it is the oscillating blood concentration of insulin release, which should, ideally, be achieved, not a constant high concentration. This may be achieved by [[Pulsatile insulin|delivering insulin rhythmically]] to the [[portal vein]], by light activated delivery, or by [[islet cell transplantation]] to the liver.
[[File:Suckale08 fig3 glucose insulin day.png|250px|thumb|The idealized diagram shows the fluctuation of [[blood sugar]] (red) and the sugar-lowering hormone '''insulin''' (blue) in humans during the course of a day containing three meals. In addition, the effect of a [[sucrose|sugar]]-rich versus a [[starch]]-rich meal is highlighted.]]
The blood insulin level can be measured in [[international unit]]s, such as µIU/mL or in [[molar concentration]], such as pmol/L, where 1 µIU/mL equals 6.945 pmol/L. A typical blood level between meals is 8–11 μIU/mL (57–79 pmol/L).
The effects of insulin are initiated by its binding to a receptor, [[Insulin receptor|the insulin receptor (IR)]], present in the cell membrane. The receptor molecule contains an α- and β subunits. Two molecules are joined to form what is known as a homodimer. Insulin binds to the α-subunits of the homodimer, which faces the extracellular side of the cells. The β subunits have tyrosine kinase enzyme activity which is triggered by the insulin binding. This activity provokes the autophosphorylation of the β subunits and subsequently the phosphorylation of proteins inside the cell known as insulin receptor substrates (IRS). The phosphorylation of the IRS activates a signal transduction cascade that leads to the activation of other kinases as well as transcription factors that mediate the intracellular effects of insulin.
The cascade that leads to the insertion of GLUT4 glucose transporters into the cell membranes of muscle and fat cells, and to the synthesis of glycogen in liver and muscle tissue, as well as the conversion of glucose into triglycerides in liver, adipose, and lactating mammary gland tissue, operates via the activation, by IRS-1, of phosphoinositol 3 kinase ([[phosphoinositide 3-kinase|PI3K]]). This enzyme converts a [[phospholipid]] in the cell membrane by the name of [[phosphatidylinositol 4,5-bisphosphate]] (PIP2), into [[Phosphatidylinositol (3,4,5)-trisphosphate|phosphatidylinositol 3,4,5-triphosphate]] (PIP3), which, in turn, activates [[AKT|protein kinase B]] (PKB). Activated PKB facilitates the fusion of GLUT4 containing [[endosome]]s with the cell membrane, resulting in an increase in GLUT4 transporters in the plasma membrane. PKB also phosphorylates [[GSK-3|glycogen synthase kinase]] (GSK), thereby inactivating this enzyme. This means that its substrate, [[glycogen synthase]] (GS), cannot be phosphorylated, and remains dephosphorylated, and therefore active. The active enzyme, glycogen synthase (GS), catalyzes the rate limiting step in the synthesis of glycogen from glucose. Similar dephosphorylations affect the enzymes controlling the rate of [[glycolysis]] leading to the synthesis of fats via [[malonyl-CoA]] in the tissues that can generate [[triglycerides]], and also the enzymes that control the rate of [[gluconeogenesis]] in the liver. The overall effect of these final enzyme dephosphorylations is that, in the tissues that can carry out these reactions, glycogen and fat synthesis from glucose are stimulated, and glucose production by the liver through [[glycogenolysis]] and [[gluconeogenesis]] are inhibited. The breakdown of triglycerides by adipose tissue into [[free fatty acids]] and [[glycerol]] is also inhibited.
After the intracellular signal that resulted from the binding of insulin to its receptor has been produced, termination of signaling is then needed. As mentioned below in the section on degradation, endocytosis and degradation of the receptor bound to insulin is a main mechanism to end signaling. In addition, the signaling pathway is also terminated by dephosphorylation of the tyrosine residues in the various signaling pathways by tyrosine phosphatases. Serine/Threonine kinases are also known to reduce the activity of insulin.
[[File:Insulin glucose metabolism ZP.svg|thumbnail|upright=1.8|'''Effect of insulin on glucose uptake and metabolism.''' Insulin binds to its receptor (1), which starts many protein activation cascades (2). These include translocation of Glut-4 transporter to the [[plasma membrane]] and influx of glucose (3), [[glycogen]] synthesis (4), [[glycolysis]] (5) and triglyceride synthesis (6).]]
[[File:Signal Transduction Diagram- Insulin.svg|thumb|upright=1.8|The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.]]
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
インスリンの世界的なヒトの代謝レベルに対する作用は以下の通りである:
The actions of insulin on the global human metabolism level include:
* Stimulates the uptake of glucose – Insulin decreases blood glucose concentration by inducing [[cellular glucose intake|intake of glucose]] by the cells. This is possible because Insulin causes the insertion of the GLUT4 transporter in the cell membranes of muscle and fat tissues which allows glucose to enter the cell.
* [[Fatty acid metabolism/ja#Glycolytic endy products are used in the conversion of carbohydrates into fatty acids|脂肪合成]]が増加 - インスリンは脂肪細胞に血中グルコースを取り込ませ、それは[[triglyceride/ja|トリグリセリド]]に変換される。
* Increased [[Fatty acid metabolism#Glycolytic endy products are used in the conversion of carbohydrates into fatty acids|fat synthesis]] – insulin forces fat cells to take in blood glucose, which is converted into [[triglyceride]]s; decrease of insulin causes the reverse.
* Increased [[esterification]] of fatty acids – forces adipose tissue to make neutral fats (i.e., [[triglycerides]]) from fatty acids; decrease of insulin causes the reverse.
* Decreased [[lipolysis]] in – forces reduction in conversion of fat cell lipid stores into blood fatty acids and glycerol; decrease of insulin causes the reverse.
* Induced glycogen synthesis – When glucose levels are high, insulin induces the formation of glycogen by the activation of the hexokinase enzyme, which adds a phosphate group in glucose, thus resulting in a molecule that cannot exit the cell. At the same time, insulin inhibits the enzyme glucose-6-phosphatase, which removes the phosphate group. These two enzymes are key for the formation of glycogen. Also, insulin activates the enzymes phosphofructokinase and glycogen synthase which are responsible for glycogen synthesis.
* Decreased [[gluconeogenesis]] and [[glycogenolysis]] – decreases production of glucose from noncarbohydrate substrates, primarily in the liver (the vast majority of endogenous insulin arriving at the liver never leaves the liver); decrease of insulin causes glucose production by the liver from assorted substrates.
* [[proteolysis/ja|タンパク質分解]]の減少-タンパク質の分解を減少させる。
* Decreased [[proteolysis]] – decreasing the breakdown of protein
* Decreased [[Autophagy (cellular)|autophagy]] – decreased level of degradation of damaged organelles. Postprandial levels inhibit autophagy completely.
* アミノ酸取り込みの増加-細胞に循環しているアミノ酸を吸収させる。
* Increased amino acid uptake – forces cells to absorb circulating amino acids; decrease of insulin inhibits absorption.
* 動脈筋緊張 - 動脈壁筋を強制的に弛緩させ、特に細動脈の血流を増加させる。
* Arterial muscle tone – forces arterial wall muscle to relax, increasing blood flow, especially in microarteries; decrease of insulin reduces flow by allowing these muscles to contract.
* 胃の胃壁細胞による[[hydrochloric acid/ja|塩酸]]の分泌増加。
* Increase in the secretion of [[hydrochloric acid]] by parietal cells in the stomach.
* Increased potassium uptake – forces cells synthesizing [[glycogen]] (a very spongy, "wet" substance, that [[Glycogen#Structure|increases the content of intracellular water, and its accompanying K<sup>+</sup> ions]]) to absorb potassium from the extracellular fluids; lack of insulin inhibits absorption. Insulin's increase in cellular potassium uptake lowers potassium levels in blood plasma. This possibly occurs via insulin-induced translocation of the [[Na+/K+-ATPase|Na<sup>+</sup>/K<sup>+</sup>-ATPase]] to the surface of skeletal muscle cells.
* 急性にインスリンが結合すると、プロテインホスファターゼ2A(PP2A)が活性化され、二機能性酵素[[Phosphofructokinase_2/ja#PFKB1:_Liver,_muscle,_and_fetal|フルクトースビスホスファターゼ-2(PFKB1)]]が脱リン酸化され、ホスホフルクトキナーゼ-2(PFK-2)の活性部位が活性化される。PFK-2はフルクトース2,6-ビスリン酸の産生を増加させる。[[Fructose 2,6-bisphosphate/ja|フルクトース2,6-ビスリン酸]]はアロステリックに[[PFK-1/ja|PFK-1]]を活性化し、糖新生よりも解糖を優先させる。解糖が増加すると、[[malonyl-CoA/ja|マロニル-CoA]]の生成が増加する。この分子は脂肪生成に振り向けられ、[[Carnitine palmitoyltransferase I /ja|カルニチンパルミトイルトランスフェラーゼI(CPT1)]]をアロステリックに阻害する。カルニチンパルミトイルトランスフェラーゼIは、脂肪酸代謝のために脂肪酸をミトコンドリアの膜間腔に移動させるのに必要なミトコンドリア酵素である。
* Decreased renal sodium excretion.tocytes, insulin binding acutely leads to activation of protein phosphatase 2A (PP2A), which dephosphorylates the bifunctional enzyme [[Phosphofructokinase_2#PFKB1:_Liver,_muscle,_and_fetal | fructose bisphosphatase-2 (PFKB1)]], activating the phosphofructokinase-2 (PFK-2) active site. PFK-2 increases production of fructose 2,6-bisphosphate. [[Fructose 2,6-bisphosphate]] allosterically activates [[PFK-1]], which favors glycolysis over gluconeogenesis. Increased glycolysis increases the formation of [[malonyl-CoA]], a molecule that can be shunted into lipogenesis and that allosterically inhibits of [[Carnitine palmitoyltransferase I | carnitine palmitoyltransferase I (CPT1)]], a mitochondrial enzyme necessary for the translocation of fatty acids into the intermembrane space of the mitochondria for fatty acid metabolism.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
インスリンはまた、[[Capacitance of blood vessels/ja|血管コンプライアンス]]や[[cognition/ja|認知]]など、他の身体機能にも影響を及ぼす。インスリンがヒトの脳に入ると、学習と記憶を強化し、特に言語記憶に有益である。経鼻インスリン投与によって脳のインスリンシグナル伝達を増強すると、食物摂取に対する急性の体温調節および糖質調節反応も増強されることから、中枢神経のインスリンは人体の様々な[[Homeostasis/ja|ホメオスタシスまたは調節プロセス]]の調整に寄与していることが示唆される。インスリンはまた、[[hypothalamus/ja|視床下部]]からの[[gonadotropin-releasing hormone/ja|ゴナドトロピン放出ホルモン]]を刺激する作用もあり、したがって[[fertility/ja|生殖能力]]に有利である。
Insulin also influences other body functions, such as [[Capacitance of blood vessels|vascular compliance]] and [[cognition]]. Once insulin enters the human brain, it enhances learning and memory and benefits verbal memory in particular. Enhancing brain insulin signaling by means of intranasal insulin administration also enhances the acute thermoregulatory and glucoregulatory response to food intake, suggesting that central nervous insulin contributes to the co-ordination of a wide variety of [[Homeostasis|homeostatic or regulatory processes]] in the human body. Insulin also has stimulatory effects on [[gonadotropin-releasing hormone]] from the [[hypothalamus]], thus favoring [[fertility]].
Once an insulin molecule has docked onto the receptor and effected its action, it may be released back into the extracellular environment, or it may be degraded by the cell. The two primary sites for insulin clearance are the liver and the kidney. It is broken down by the enzyme, [[protein-disulfide reductase (glutathione)]], which breaks the disulphide bonds between the A and B chains. The liver clears most insulin during first-pass transit, whereas the kidney clears most of the insulin in systemic circulation. Degradation normally involves [[endocytosis]] of the insulin-receptor complex, followed by the action of [[insulin-degrading enzyme]]. An insulin molecule produced endogenously by the beta cells is estimated to be degraded within about one hour after its initial release into circulation (insulin [[biological half-life|half-life]] ~ 4–6 minutes).
Insulin is a major regulator of [[Endocannabinoids|endocannabinoid]] (EC) [[metabolism]] and insulin treatment has been shown to reduce [[intracellular]] ECs, the [[2-Arachidonoylglycerol|2-arachidonoylglycerol]] (2-AG) and [[anandamide]] (AEA), which correspond with insulin-sensitive expression changes in enzymes of EC metabolism. In insulin-resistant [[adipocyte]]s, patterns of insulin-induced enzyme expression is disturbed in a manner consistent with elevated EC [[Biosynthesis|synthesis]] and reduced EC degradation. Findings suggest that [[Insulin resistance|insulin-resistant]] adipocytes fail to regulate EC metabolism and decrease intracellular EC levels in response to insulin stimulation, whereby [[Obesity|obese]] insulin-resistant individuals exhibit increased concentrations of ECs. This dysregulation contributes to excessive [[Adipose tissue|visceral fat]] accumulation and reduced [[adiponectin]] release from abdominal adipose tissue, and further to the onset of several cardiometabolic risk factors that are associated with obesity and [[type 2 diabetes]].
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== 低血糖症 ==
== Hypoglycemia ==
{{Anchor|Hypoglycemia}}
{{Main|Hypoglycemia}}
{{Main/ja|Hypoglycemia/ja}}
[[Hypoglycemia]], also known as "low blood sugar", is when [[blood sugar]] decreases to below normal levels. This may result in a variety of [[symptoms]] including clumsiness, trouble talking, confusion, [[loss of consciousness]], [[seizures]] or death. A feeling of hunger, sweating, shakiness and weakness may also be present.
「低血糖」としても知られる[[Hypoglycemia/ja|低血糖症]]は、[[blood sugar/ja|血糖]]が正常値以下まで低下することである。その結果、不器用、会話障害、錯乱、[[loss of consciousness/ja|意識喪失]]、[[seizures/ja|発作]]、または死亡を含む様々な[[symptoms/ja|症状]]が生じることがある。空腹感、発汗、震え、脱力感もみられることがある。
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
低血糖の最も一般的な原因は、インスリンや[[sulfonylurea/ja|スルホニルウレア]]などの[[diabetes/ja|糖尿病]]の治療に用いられる[[Anti-diabetic medication/ja|医薬品]]である。食事量がいつもより少なかったり、運動量がいつもより多かったり、[[ethanol/ja|アルコール]]を摂取したりした糖尿病患者では、リスクが高くなる。低血糖の他の原因としては、[[kidney failure/ja|腎不全]]、特定の[[tumors/ja|腫瘍]]、[[insulinoma/ja|インスリノーマ]]、[[liver disease/ja|肝疾患]]、[[hypothyroidism/ja|甲状腺機能低下症]]、[[starvation/ja|飢餓]]、[[inborn error of metabolism/ja|先天性代謝異常]]、[[sepsis/ja|重症感染症]]、[[reactive hypoglycemia/ja|反応性低血糖]]、アルコールを含む多くの薬物が挙げられる。低血糖は、数時間何も食べていない健康な赤ちゃんに起こることがある。
The most common cause of hypoglycemia is [[Anti-diabetic medication|medications]] used to treat [[diabetes]] such as insulin and [[sulfonylurea]]s. Risk is greater in diabetics who have eaten less than usual, exercised more than usual or have consumed [[ethanol|alcohol]]. Other causes of hypoglycemia include [[kidney failure]], certain [[tumors]], such as [[insulinoma]], [[liver disease]], [[hypothyroidism]], [[starvation]], [[inborn error of metabolism]], [[sepsis|severe infections]], [[reactive hypoglycemia]] and a number of drugs including alcohol. Low blood sugar may occur in otherwise healthy babies who have not eaten for a few hours.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== 疾患と症候群 ==
== Diseases and syndromes ==
{{Anchor|Diseases and syndromes}}
There are several conditions in which insulin disturbance is pathologic:
インスリン分泌障害が病態となる疾患はいくつかある:
* [[Diabetes]] – general term referring to all states characterized by hyperglycemia. It can be of the following types:
* [[Diabetes/ja|糖尿病]]-高血糖を特徴とする全ての状態を指す総称である:
**[[Type 1 diabetes]] – autoimmune-mediated destruction of insulin-producing β-cells in the pancreas, resulting in absolute insulin deficiency
** [[Type 2 diabetes]] – either inadequate insulin production by the β-cells or [[insulin resistance]] or both because of reasons not completely understood.
*** there is correlation with [[Diet (nutrition)|diet]], with sedentary lifestyle, with [[obesity]], with age and with [[metabolic syndrome]]. Causality has been demonstrated in multiple model organisms including mice and monkeys; importantly, non-obese people do get Type 2 diabetes due to diet, sedentary lifestyle and unknown risk factors, though it is important to note that this may not be a causal relationship.
* [[Metabolic syndrome]] – a poorly understood condition first called syndrome X by [[Gerald Reaven]]. It is not clear whether the syndrome has a single, treatable cause, or is the result of body changes leading to type 2 diabetes. It is characterized by elevated blood pressure, dyslipidemia (disturbances in blood cholesterol forms and other blood lipids), and increased waist circumference (at least in populations in much of the developed world). The basic underlying cause may be the insulin resistance that precedes type 2 diabetes, which is a diminished capacity for [[#Physiological effects|insulin response]] in some tissues (e.g., muscle, fat). It is common for morbidities such as essential [[hypertension]], [[obesity]], type 2 diabetes, and [[cardiovascular disease]] (CVD) to develop.
* [[Polycystic ovary syndrome]] – a complex syndrome in women in the reproductive years where [[anovulation]] and [[androgen]] excess are commonly displayed as [[hirsutism]]. In many cases of PCOS, insulin resistance is present.
Biosynthetic [[human insulin]] (insulin human rDNA, INN) for clinical use is manufactured by [[Recombinant DNA#Synthetic insulin production using recombinant DNA|recombinant DNA]] technology. Biosynthetic human insulin has increased purity when compared with extractive animal insulin, enhanced purity reducing antibody formation. Researchers have succeeded in introducing the gene for human insulin into plants as another method of producing insulin ("biopharming") in [[safflower]]. This technique is anticipated to reduce production costs.
臨床用の生合成[[human insulin/ja|ヒトインスリン]](インスリンヒトrDNA、INN)は、[[Recombinant DNA/ja#Synthetic insulin production using recombinant DNA|組換えDNA]]技術によって製造される。生合成ヒトインスリンは、抽出動物インスリンと比較して純度が高く、純度の向上により抗体形成が抑制される。研究者らは、[[safflower/ja|ベニバナ]]でインスリンを生産するもう一つの方法("バイオファーミング")として、ヒトインスリンの遺伝子を植物に導入することに成功した。この技術により、生産コストの削減が期待される。
Several analogs of human insulin are available. These [[insulin analog]]s are closely related to the human insulin structure, and were developed for specific aspects of glycemic control in terms of fast action (prandial insulins) and long action (basal insulins). The first biosynthetic insulin analog was developed for clinical use at mealtime (prandial insulin), [[Humalog]] (insulin lispro), it is more rapidly absorbed after subcutaneous injection than regular insulin, with an effect 15 minutes after injection. Other rapid-acting analogues are [[NovoRapid]] and [[Apidra]], with similar profiles. All are rapidly absorbed due to amino acid sequences that will reduce formation of dimers and hexamers (monomeric insulins are more rapidly absorbed). Fast acting insulins do not require the injection-to-meal interval previously recommended for human insulin and animal insulins. The other type is long acting insulin; the first of these was [[Lantus]] (insulin glargine). These have a steady effect for an extended period from 18 to 24 hours. Likewise, another protracted insulin analogue ([[Levemir]]) is based on a fatty acid acylation approach. A [[myristic acid]] molecule is attached to this analogue, which associates the insulin molecule to the abundant serum albumin, which in turn extends the effect and reduces the risk of hypoglycemia. Both protracted analogues need to be taken only once daily, and are used for type 1 diabetics as the basal insulin. A combination of a rapid acting and a protracted insulin is also available, making it more likely for patients to achieve an insulin profile that mimics that of the body's own insulin release. Insulin is also used in many cell lines, such as CHO-s, HEK 293 or Sf9, for the manufacturing of monoclonal antibodies, virus vaccines, and gene therapy products.
Insulin is usually taken as [[subcutaneous injection]]s by single-use [[syringe]]s with [[hypodermic needle|needles]], via an [[insulin pump]], or by repeated-use [[insulin pen]]s with disposable needles. [[Inhaled insulin]] is also available in the U.S. market.
The Dispovan Single-Use Pen Needle by HMD is India’s first insulin pen needle that makes self-administration easy. Featuring extra-thin walls and a multi-bevel tapered point, these pen needles prioritise patient comfort by minimising pain and ensuring seamless medication delivery. The product aims to provide affordable Pen Needles to the developing part of the country through its wide distribution channel. Additionally, the universal design of these needles guarantees compatibility with all insulin pens.
Unlike many medicines, insulin cannot be taken [[Oral administration|by mouth]] because, like nearly all other proteins introduced into the [[Human gastrointestinal tract|gastrointestinal tract]], it is reduced to fragments, whereupon all activity is lost. There has been some research into ways to protect insulin from the digestive tract, so that it can be administered orally or sublingually.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
2021年、[[World Health Organization/ja|世界保健機関]]はインスリンを[[WHO Model List of Essential Medicines/ja|必須医薬品モデルリスト]]に追加した。
In 2021, the [[World Health Organization]] added insulin to its [[WHO Model List of Essential Medicines|model list of essential medicines]].
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
インスリンやその他の医薬品はすべて、イギリスの国々では[[:en:National Health Service|国民保健サービス]]によって糖尿病患者に無料で提供されている。
Insulin, and all other medications, are supplied free of charge to people with diabetes by the [[National Health Service]] in the countries of the United Kingdom.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== 研究の歴史 ==
== History of study ==
{{Anchor|History of study}}
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
=== 発見 ===
=== Discovery ===
1869年、[[pancreas/ja|膵臓]]の構造を[[:en:microscope|顕微鏡]]で研究していたとき、[[:en:Berlin|ベルリン]]の医学生であった[[:en:Paul Langerhans|ポール・ランゲルハンス]]は、膵臓の大部分に散在する、それまで気づかれていなかったいくつかの組織の塊を同定した。後に[[islets of Langerhans/ja|ランゲルハンス島]]と[[eponym/ja|として知られる]]「小さな細胞の山」の機能は当初不明のままであったが、後に[[:en:Édouard Laguesse|エドゥアール・ラゲス]]は消化において調節的な役割を果たす分泌物を産生する可能性を示唆した。ポール・ランゲルハンスの息子、アーチボルドもまた、この調節の役割を理解するのに貢献した。
In 1869, while studying the structure of the [[pancreas]] under a [[microscope]], [[Paul Langerhans]], a medical student in [[Berlin]], identified some previously unnoticed tissue clumps scattered throughout the bulk of the pancreas. The function of the "little heaps of cells", later [[eponym|known as]] the ''[[islets of Langerhans]]'', initially remained unknown, but [[Édouard Laguesse]] later suggested they might produce secretions that play a regulatory role in digestion. Paul Langerhans' son, Archibald, also helped to understand this regulatory role.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
1889年、医師[[:en:Oskar Minkowski|オスカー・ミンコフスキー]]は[[:en:Joseph von Mering|ヨーゼフ・フォン・メリング]]と共同で、健康な犬から膵臓を摘出し、消化における膵臓の役割をテストした。尿を検査すると糖が検出され、膵臓と糖尿病の関係が初めて確立された。1901年、アメリカの医師であり科学者である[[:en:Eugene Lindsay Opie|ユージン・リンゼイ・オピー]]によって、膵臓の役割をランゲルハンス島に分離したとき、もう一つの大きな一歩が踏み出された: 「膵臓の病変の結果として起こる糖尿病は、ランゲルハンス島の破壊によって引き起こされ、これらの小体の一部または全部が破壊された場合にのみ起こる」
In 1889, the physician [[Oskar Minkowski]], in collaboration with [[Joseph von Mering]], removed the pancreas from a healthy dog to test its assumed role in digestion. On testing the urine, they found sugar, establishing for the first time a relationship between the pancreas and diabetes. In 1901, another major step was taken by the American physician and scientist [[Eugene Lindsay Opie]], when he isolated the role of the pancreas to the islets of Langerhans: "Diabetes mellitus when the result of a lesion of the pancreas is caused by destruction of the islands of Langerhans and occurs only when these bodies are in part or wholly destroyed".
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
その後20年間、研究者たちは膵島の分泌物を単離する試みを何度か行った。1906年、[[:en:George Ludwig Zuelzer|ジョージ・ルートヴィヒ・ズエルツァー]]は膵臓エキスによる犬の治療で部分的な成功を収めたが、彼は研究を続けることができなかった。1911年から1912年にかけて、[[:en:University of Chicago|シカゴ大学]]の[[:en:Ernest Lyman Scott|E.L.スコット]]は水性膵臓エキスを試し、「糖尿のわずかな減少」を指摘したが、彼の研究の価値について彼のディレクターを納得させることができず、研究は中止された。[[:en:Israel Kleiner (biochemist)|イスラエル・クライナー]]は1915年に[[:en:Rockefeller University|ロックフェラー大学]]で同様の効果を実証したが、[[:en:World War I|第一次世界大戦]]で彼の研究は中断され、復帰することはなかった。
Over the next two decades researchers made several attempts to isolate the islets' secretions. In 1906 [[George Ludwig Zuelzer]] achieved partial success in treating dogs with pancreatic extract, but he was unable to continue his work. Between 1911 and 1912, [[Ernest Lyman Scott|E.L. Scott]] at the [[University of Chicago]] tried aqueous pancreatic extracts and noted "a slight diminution of glycosuria", but was unable to convince his director of his work's value; it was shut down. [[Israel Kleiner (biochemist)|Israel Kleiner]] demonstrated similar effects at [[Rockefeller University]] in 1915, but [[World War I]] interrupted his work and he did not return to it.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
1916年、[[:en:Nicolae Paulescu|ニコライ・パウレスク]]は[[aqueous/ja|水性]]の[[Pancreas/ja|膵臓]]エキスを開発した。このエキスを[[diabetes/ja|糖尿病]]の犬に注射すると、[[blood sugar/ja|血糖値]]を正常化する効果があった。彼は[[:en:World War I|第一次世界大戦]]のために実験を中断せざるを得なかったが、1921年に[[:en:Bucharest|ブカレスト]]で行った研究と糖尿病犬のテストについて4つの論文を書いた。同年末、彼は『食物同化における[[pancreas/ja|膵臓]]の役割に関する研究』を出版した。
In 1916, [[Nicolae Paulescu]] developed an [[aqueous]] [[Pancreas|pancreatic]] extract which, when injected into a [[Diabetes|diabetic]] dog, had a normalizing effect on [[blood sugar]] levels. He had to interrupt his experiments because of [[World War I]], and in 1921 he wrote four papers about his work carried out in [[Bucharest]] and his tests on a diabetic dog. Later that year, he published "Research on the Role of the [[Pancreas]] in Food Assimilation".
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
"インスリン"という名前は、1916年に[[:en:Edward Albert Sharpey-Schafer|エドワード・アルバート・シャーペイ=シェーファー]]によって、グルコース代謝を制御するランゲルハンス膵島(ラテン語で膵島または島を意味する''insula'')によって産生される仮説上の分子に対して造語された。シャーペイ=シェーファーが知らない間に、ジャン・ド・メイヤーは1909年に同じ分子に対して非常によく似た「insuline」という言葉を発表していた。
The name "insulin" was coined by [[Edward Albert Sharpey-Schafer]] in 1916 for a hypothetical molecule produced by pancreatic islets of Langerhans (Latin ''insula'' for islet or island) that controls glucose metabolism. Unbeknown to Sharpey-Schafer, Jean de Meyer had introduced the very similar word "insuline" in 1909 for the same molecule.
In October 1920, Canadian [[Frederick Banting]] concluded that the digestive secretions that Minkowski had originally studied were breaking down the islet secretion, thereby making it impossible to extract successfully. A surgeon by training, Banting knew that blockages of the pancreatic duct would lead most of the pancreas to atrophy, while leaving the islets of Langerhans intact. He reasoned that a relatively pure extract could be made from the islets once most of the rest of the pancreas was gone. He jotted a note to himself: "Ligate pancreatic ducts of dog. Keep dogs alive till acini degenerate leaving Islets. Try to isolate the internal secretion of these + relieve glycosurea[sic]."
[[File:Charles H. Best and Clark Noble ca. 1920.jpg|thumb|left|[[:en:Charles Best (medical scientist)|チャールズ・ベスト]]とクラーク・ノーブル,1920年]]
[[File:Charles H. Best and Clark Noble ca. 1920.jpg|thumb|left|[[Charles Best (medical scientist)|Charles Best]] and Clark Noble ca. 1920]]
1921年の春、バンティングは[[:en:Toronto|トロント]]を訪れ、[[:en:University of Toronto|トロント大学]]の生理学教授である[[:en:John Macleod (physiologist)|ジョン・マクレオド]]に自分のアイデアを説明した。マクレオドは当初、バンティングには研究の素養がなく、最新の文献にも精通していなかったため懐疑的だったが、バンティングが自分のアイデアを試すための実験スペースを提供することに同意した。マクレオドはまた、その夏、バンティングの実験助手として2人の学部生を手配したが、バンティングが必要とした実験助手は1人だけだった。[[:en:Charles Best (medical scientist)|チャールズ・ベスト]]とクラーク・ノーブルがコインを投げ、ベストが勝って最初のシフトに入った。これはノーブルにとって不運であった。バンティングは夏の間ずっとベストを研究室に残し、最終的にノーベル賞の賞金の半分と発見の功績をベストと分け合ったからである。1921年7月30日、バンティングとベストは、ダクトで縛った犬の膵島から抽出物(「イズレチン」)の単離に成功し、それを糖尿病の犬に注射した。
In the spring of 1921, Banting traveled to [[Toronto]] to explain his idea to [[John Macleod (physiologist)|John Macleod]], Professor of Physiology at the [[University of Toronto]]. Macleod was initially skeptical, since Banting had no background in research and was not familiar with the latest literature, but he agreed to provide lab space for Banting to test out his ideas. Macleod also arranged for two undergraduates to be Banting's lab assistants that summer, but Banting required only one lab assistant. [[Charles Best (medical scientist)|Charles Best]] and Clark Noble flipped a coin; Best won the coin toss and took the first shift. This proved unfortunate for Noble, as Banting kept Best for the entire summer and eventually shared half his Nobel Prize money and credit for the discovery with Best. On 30 July 1921, Banting and Best successfully isolated an extract ("isletin") from the islets of a duct-tied dog and injected it into a diabetic dog, finding that the extract reduced its blood sugar by 40% in 1 hour.
Banting and Best presented their results to Macleod on his return to Toronto in the fall of 1921, but Macleod pointed out flaws with the experimental design, and suggested the experiments be repeated with more dogs and better equipment. He moved Banting and Best into a better laboratory and began paying Banting a salary from his research grants. Several weeks later, the second round of experiments was also a success, and Macleod helped publish their results privately in Toronto that November. Bottlenecked by the time-consuming task of duct-tying dogs and waiting several weeks to extract insulin, Banting hit upon the idea of extracting insulin from the fetal calf pancreas, which had not yet developed digestive glands. By December, they had also succeeded in extracting insulin from the adult cow pancreas. Macleod discontinued all other research in his laboratory to concentrate on the purification of insulin. He invited biochemist [[James Collip]] to help with this task, and the team felt ready for a clinical test within a month.
[[File:Chart for Elizabeth Hughes (12308739143).jpg|thumb|血液、尿、グラム単位の食事、グラム単位の食事処方を記録するために使用したエリザベス・ヒューズのカルテ]]
[[File:Chart for Elizabeth Hughes (12308739143).jpg|thumb|Chart for Elizabeth Hughes, used to track blood, urine, diet in grams, and dietary prescriptions in grams]]
1922年1月11日、[[:en:Toronto General Hospital|トロント総合病院]]で瀕死の状態にあった14歳の糖尿病患者[[:en:Leonard Thompson (diabetic)|レナード・トンプソン]]に、初めてインスリンの注射が行われた。しかし、その抽出液があまりにも不純だったため、トンプソンはひどい[[anaphylaxis/ja|アレルギー反応]]を起こし、それ以降の注射は中止された。その後12日間、コリップは昼夜を問わず牛膵臓エキスの改良に努めた。2回目の注射は1月23日に行われ、明らかな副作用を引き起こすことなく、糖尿病の典型的な[[glycosuria/ja|糖尿]]を解消した。アメリカ人最初の患者は、アメリカ国務長官[[:en:Charles Evans Hughes|チャールズ・エバンス・ヒューズ]]の娘である[[:en:Elizabeth Hughes Gossett|エリザベス・ヒューズ]]であった。 [[:en:John Ralston Williams|ジョン・ラルストン・ウィリアムズ]]は、トロントから[[:en:Rochester, New York|ニューヨーク州ロチェスター]]にインスリンを輸入し、ヘブンスを治療した。
On 11 January 1922, [[Leonard Thompson (diabetic)|Leonard Thompson]], a 14-year-old diabetic who lay dying at the [[Toronto General Hospital]], was given the first injection of insulin. However, the extract was so impure that Thompson had a severe [[anaphylaxis|allergic reaction]], and further injections were cancelled. Over the next 12 days, Collip worked day and night to improve the ox-pancreas extract. A second dose was injected on 23 January, eliminating the [[glycosuria]] that was typical of diabetes without causing any obvious side-effects. The first American patient was [[Elizabeth Hughes Gossett|Elizabeth Hughes]], the daughter of U.S. Secretary of State [[Charles Evans Hughes]]. The first patient treated in the U.S. was future woodcut artist [[James D. Havens]]; [[John Ralston Williams]] imported insulin from Toronto to [[Rochester, New York]], to treat Havens.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
バンティングとベストはコリップを邪魔者扱いし、決してうまくはいかなかった。1922年の春にかけて、ベストは大量のインスリンをオンデマンドで抽出できるまでに技術を向上させることに成功したが、製剤は不純物のままであった。薬物会社[[Eli Lilly and Company]]は、1921年の最初の発表から間もなくして援助を申し出ており、4月にはLillyの申し出を受けた。11月、Lillyの主任化学者である[[:en:George B. Walden|ジョージ・B・ウォルデン]]は[[Protein precipitation/ja|#Isoelectric precipitation|等電点沈殿]]を発見し、高度に精製されたインスリンを大量に生産することができた。その後まもなく、インスリンは一般向けに販売されるようになった。
Banting and Best never worked well with Collip, regarding him as something of an interloper, and Collip left the project soon after. Over the spring of 1922, Best managed to improve his techniques to the point where large quantities of insulin could be extracted on demand, but the preparation remained impure. The drug firm [[Eli Lilly and Company]] had offered assistance not long after the first publications in 1921, and they took Lilly up on the offer in April. In November, Lilly's head chemist, [[George B. Walden]] discovered [[Protein precipitation#Isoelectric precipitation|isoelectric precipitation]] and was able to produce large quantities of highly refined insulin. Shortly thereafter, insulin was offered for sale to the general public.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
=== 特許 ===
=== Patent ===
1922年1月末、インスリンの「共同発見者」4人の間に緊張が高まり、コリップは一時、彼の精製プロセスを個別に[[:en:patent|特許]]にすると脅した。そこで、非商業的な公衆衛生機関[[:en:Connaught Laboratories|コノート研究所]]の所長である[[:en:John G. FitzGerald|ジョン・G・フィッツジェラルド]]が仲立ちに入った。その結果、1922年1月25日の合意では2つの重要な条件が定められた: 1)共同研究者たちは、コンノートとの最初の共同研究期間中、営利目的の製薬会社との間で特許を取らないことに同意する契約を結ぶこと、2)フィッツジェラルドと4人の共同研究者たちの間で最初に話し合いがなされない限り、研究方針の変更は許されないこと、である。これによって意見の対立を抑え、研究をコンノートの公的使命に結びつけることができた。
Toward the end of January 1922, tensions mounted between the four "co-discoverers" of insulin and Collip briefly threatened to separately [[patent]] his purification process. [[John G. FitzGerald]], director of the non-commercial public health institution [[Connaught Laboratories]], therefore stepped in as peacemaker. The resulting agreement of 25 January 1922 established two key conditions: 1) that the collaborators would sign a contract agreeing not to take out a patent with a commercial pharmaceutical firm during an initial working period with Connaught; and 2) that no changes in research policy would be allowed unless first discussed among FitzGerald and the four collaborators. It helped contain disagreement and tied the research to Connaught's public mandate.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
当初、マクロードとバンティングは、医療倫理上の理由から、インスリンの製法を特許化することに特に消極的であった。しかし、[[Eli Lilly and Company]]がほのめかしていたように、民間の第三者が研究を乗っ取り独占してしまうのではないか、品質管理の能力がなければ安全な流通を保証することは難しいのではないかという懸念が残った。そのために[[:en:Edward Calvin Kendall|エドワード・カルヴィン・ケンドール]]は貴重な助言を与えた。彼は1914年に[[:en:Mayo Clinic|メイヨー・クリニック]]で[[:en:thyroxin|サイロキシン]]を単離し,自分とメイヨー兄弟と[[:en:thyroxin|ミネソタ大学]]との間の取り決めによってその製法を特許化し,その特許を公立大学に譲渡した。4月12日、バンティング、ベスト、コリップ、マクラウド、フィッツジェラルドは連名で[[:en:University of Toronto|トロント大学]]の学長に手紙を送り、同大学の理事会に特許を譲渡することを目的とした同様の取り決めを提案した。その書簡では、{{blockquote|特許は、他者による特許の持ち出しを防ぐ以外のいかなる目的にも使用されることはないだろうと強調されていた。調製方法の詳細が公表されれば、誰でも自由にエキスを調製することができるが、誰も利益を得る独占権を確保することはできないだろう}}トロント大学理事会への譲渡は1923年1月15日に完了し、1ドルという形だけの支払いが行われた。この取り決めは、1923年の''[[Wikipedia:The World's Work|The World's Work]]''で「医療倫理の一歩前進」として祝福された。また、2010年代には、[[:en:Health care prices in the United States|ヘルスケア]]や[[:en:Prescription drug prices in the United States|薬物の値ごろ感]]の問題に関して、多くのメディアの注目を集めた。
Initially, Macleod and Banting were particularly reluctant to patent their process for insulin on grounds of medical ethics. However, concerns remained that a private third-party would hijack and monopolize the research (as [[Eli Lilly and Company]] had hinted), and that safe distribution would be difficult to guarantee without capacity for quality control. To this end, [[Edward Calvin Kendall]] gave valuable advice. He had isolated [[thyroxin]] at the [[Mayo Clinic]] in 1914 and patented the process through an arrangement between himself, the brothers Mayo, and the [[University of Minnesota]], transferring the patent to the public university. On 12 April, Banting, Best, Collip, Macleod, and FitzGerald wrote jointly to the president of the [[University of Toronto]] to propose a similar arrangement with the aim of assigning a patent to the Board of Governors of the university. The letter emphasized that:{{blockquote|The patent would not be used for any other purpose than to prevent the taking out of a patent by other persons. When the details of the method of preparation are published anyone would be free to prepare the extract, but no one could secure a profitable monopoly.}}The assignment to the University of Toronto Board of Governors was completed on 15 January 1923, for the token payment of $1.00. The arrangement was congratulated in ''[[The World's Work]]'' in 1923 as "a step forward in medical ethics". It has also received much media attention in the 2010s regarding the issue of [[Health care prices in the United States|healthcare]] and [[Prescription drug prices in the United States|drug affordability]].
Following further concern regarding Eli Lilly's attempts to separately patent parts of the manufacturing process, Connaught's Assistant Director and Head of the Insulin Division [[Robert Defries]] established a patent pooling policy which would require producers to freely share any improvements to the manufacturing process without compromising affordability.
バンティングとベストはコリップを邪魔者扱いし、決してうまくはいかなかった。1922年の春にかけて、ベストは大量のインスリンをオンデマンドで抽出できるまでに技術を向上させることに成功したが、製剤は不純物のままであった。薬物会社Eli Lilly and Companyは、1921年の最初の発表から間もなくして援助を申し出ており、4月にはLillyの申し出を受けた。11月、Lillyの主任化学者であるジョージ・B・ウォルデンは#Isoelectric precipitation|等電点沈殿を発見し、高度に精製されたインスリンを大量に生産することができた。その後まもなく、インスリンは一般向けに販売されるようになった。
当初、マクロードとバンティングは、医療倫理上の理由から、インスリンの製法を特許化することに特に消極的であった。しかし、Eli Lilly and Companyがほのめかしていたように、民間の第三者が研究を乗っ取り独占してしまうのではないか、品質管理の能力がなければ安全な流通を保証することは難しいのではないかという懸念が残った。そのためにエドワード・カルヴィン・ケンドールは貴重な助言を与えた。彼は1914年にメイヨー・クリニックでサイロキシンを単離し,自分とメイヨー兄弟とミネソタ大学との間の取り決めによってその製法を特許化し,その特許を公立大学に譲渡した。4月12日、バンティング、ベスト、コリップ、マクラウド、フィッツジェラルドは連名でトロント大学の学長に手紙を送り、同大学の理事会に特許を譲渡することを目的とした同様の取り決めを提案した。その書簡では、
Kumar S, O'Rahilly S (14 January 2005). Insulin Resistance: Insulin Action and Its Disturbances in Disease. Chichester, England: Wiley. ISBN978-0-470-85008-4.
Draznin B, LeRoith D (September 1994). Molecular Biology of Diabetes: Autoimmunity and Genetics; Insulin Synthesis and Secretion. Totowa, New Jersey: Humana Press. ISBN978-0-89603-286-6.
McKeage K, Goa KL (2001). "Insulin glargine: a review of its therapeutic use as a long-acting agent for the management of type 1 and 2 diabetes mellitus". Drugs. 61 (11): 1599–624. doi:10.2165/00003495-200161110-00007. PMID11577797. S2CID46972328.
1ai0: R6 HUMAN INSULIN HEXAMER (NON-SYMMETRIC), NMR, 10 STRUCTURES
1aiy: R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 10 STRUCTURES
1aph: CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11
1b17: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.00 COORDINATES)
1b18: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.53 COORDINATES)
1b19: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 5.80 COORDINATES)
1b2a: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.00 COORDINATES)
1b2b: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.16 COORDINATES)
1b2c: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.26 COORDINATES)
1b2d: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.35 COORDINATES)
1b2e: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.50 COORDINATES)
1b2f: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 6.98 COORDINATES)
1b2g: PH AFFECTS GLU B13 SWITCHING AND SULFATE BINDING IN CUBIC INSULIN CRYSTALS (PH 9.00 COORDINATES)
1b9e: HUMAN INSULIN MUTANT SERB9GLU
1ben: INSULIN COMPLEXED WITH 4-HYDROXYBENZAMIDE
1bph: CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11
1cph: CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11
1dph: CONFORMATIONAL CHANGES IN CUBIC INSULIN CRYSTALS IN THE PH RANGE 7-11
1ev3: Structure of the rhombohedral form of the M-cresol/insulin R6 hexamer
1ev6: Structure of the monoclinic form of the M-cresol/insulin R6 hexamer
1evr: The structure of the resorcinol/insulin R6 hexamer
1fu2: FIRST PROTEIN STRUCTURE DETERMINED FROM X-RAY POWDER DIFFRACTION DATA
1fub: FIRST PROTEIN STRUCTURE DETERMINED FROM X-RAY POWDER DIFFRACTION DATA
1g7a: 1.2 A structure of T3R3 human insulin at 100 K
1g7b: 1.3 A STRUCTURE OF T3R3 HUMAN INSULIN AT 100 K
1guj: INSULIN AT PH 2: STRUCTURAL ANALYSIS OF THE CONDITIONS PROMOTING INSULIN FIBRE FORMATION.
1hiq: PARADOXICAL STRUCTURE AND FUNCTION IN A MUTANT HUMAN INSULIN ASSOCIATED WITH DIABETES MELLITUS
1hit: RECEPTOR BINDING REDEFINED BY A STRUCTURAL SWITCH IN A MUTANT HUMAN INSULIN
1hls: NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16)
1htv: CRYSTAL STRUCTURE OF DESTRIPEPTIDE (B28-B30) INSULIN
1iza: ROLE OF B13 GLU IN INSULIN ASSEMBLY: THE HEXAMER STRUCTURE OF RECOMBINANT MUTANT (B13 GLU-> GLN) INSULIN
1izb: ROLE OF B13 GLU IN INSULIN ASSEMBLY: THE HEXAMER STRUCTURE OF RECOMBINANT MUTANT (B13 GLU-> GLN) INSULIN
1j73: Crystal structure of an unstable insulin analog with native activity.
1jca: Non-standard Design of Unstable Insulin Analogues with Enhanced Activity
1jco: Solution structure of the monomeric [Thr(B27)->Pro,Pro(B28)->Thr] insulin mutant (PT insulin)
1lph: LYS(B28)PRO(B29)-HUMAN INSULIN
1m5a: Crystal Structure of 2-Co(2+)-Insulin at 1.2A Resolution
1mhi: THREE-DIMENSIONAL SOLUTION STRUCTURE OF AN INSULIN DIMER. A STUDY OF THE B9(ASP) MUTANT OF HUMAN INSULIN USING NUCLEAR MAGNETIC RESONANCE DISTANCE GEOMETRY AND RESTRAINED MOLECULAR DYNAMICS
1mhj: SOLUTION STRUCTURE OF THE SUPERACTIVE MONOMERIC DES-[PHE(B25)] HUMAN INSULIN MUTANT. ELUCIDATION OF THE STRUCTURAL BASIS FOR THE MONOMERIZATION OF THE DES-[PHE(B25)] INSULIN AND THE DIMERIZATION OF NATIVE INSULIN
1mpj: X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL
1mso: T6 Human Insulin at 1.0 A Resolution
1os3: Dehydrated T6 human insulin at 100 K
1os4: Dehydrated T6 human insulin at 295 K
1q4v: CRYSTAL STRUCTURE OF ALLO-ILEA2-INSULIN, AN INACTIVE CHIRAL ANALOGUE: IMPLICATIONS FOR THE MECHANISM OF RECEPTOR
1qiy: HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR COMPLEXED WITH PHENOL
1qiz: HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR COMPLEXED WITH RESORCINOL
1qj0: HUMAN INSULIN HEXAMERS WITH CHAIN B HIS MUTATED TO TYR
1rwe: Enhancing the activity of insulin at receptor edge: crystal structure and photo-cross-linking of A8 analogues
1sf1: NMR STRUCTURE OF HUMAN INSULIN under Amyloidogenic Condition, 15 STRUCTURES
1t0c: Solution Structure of Human Proinsulin C-Peptide
1trz: CRYSTALLOGRAPHIC EVIDENCE FOR DUAL COORDINATION AROUND ZINC IN THE T3R3 HUMAN INSULIN HEXAMER
1tyl: THE STRUCTURE OF A COMPLEX OF HEXAMERIC INSULIN AND 4'-HYDROXYACETANILIDE
1tym: THE STRUCTURE OF A COMPLEX OF HEXAMERIC INSULIN AND 4'-HYDROXYACETANILIDE
1uz9: CRYSTALLOGRAPHIC AND SOLUTION STUDIES OF N-LITHOCHOLYL INSULIN: A NEW GENERATION OF PROLONGED-ACTING INSULINS.
1w8p: STRUCTURAL PROPERTIES OF THE B25TYR-NME-B26PHE INSULIN MUTANT.
1wav: CRYSTAL STRUCTURE OF FORM B MONOCLINIC CRYSTAL OF INSULIN
1xda: STRUCTURE OF INSULIN
1xgl: HUMAN INSULIN DISULFIDE ISOMER, NMR, 10 STRUCTURES
1xw7: Diabetes-Associated Mutations in Human Insulin: Crystal Structure and Photo-Cross-Linking Studies of A-Chain Variant Insulin Wakayama
1zeg: STRUCTURE OF B28 ASP INSULIN IN COMPLEX WITH PHENOL
1zeh: STRUCTURE OF INSULIN
1zni: INSULIN
1znj: INSULIN, MONOCLINIC CRYSTAL FORM
2a3g: The structure of T6 bovine insulin
2aiy: R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 20 STRUCTURES
2bn1: INSULIN AFTER A HIGH DOSE X-RAY BURN
2bn3: INSULIN BEFORE A HIGH DOSE X-RAY BURN
2c8q: INSULINE(1SEC) AND UV LASER EXCITED FLUORESCENCE
2c8r: INSULINE(60SEC) AND UV LASER EXCITED FLUORESCENCE
2g4m: Insulin collected at 2.0 A wavelength
2g54: Crystal structure of Zn-bound human insulin-degrading enzyme in complex with insulin B chain
2g56: crystal structure of human insulin-degrading enzyme in complex with insulin B chain
2hiu: NMR STRUCTURE OF HUMAN INSULIN IN 20% ACETIC ACID, ZINC-FREE, 10 STRUCTURES
2ins: THE STRUCTURE OF DES-PHE B1 BOVINE INSULIN
2omg: Structure of human insulin cocrystallized with protamine and urea
2omh: Structure of human insulin cocrystallized with ARG-12 peptide in presence of urea
2omi: Structure of human insulin cocrystallized with protamine
2tci: X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL
3aiy: R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, REFINED AVERAGE STRUCTURE
3ins: STRUCTURE OF INSULIN. RESULTS OF JOINT NEUTRON AND X-RAY REFINEMENT
3mth: X-RAY CRYSTALLOGRAPHIC STUDIES ON HEXAMERIC INSULINS IN THE PRESENCE OF HELIX-STABILIZING AGENTS, THIOCYANATE, METHYLPARABEN AND PHENOL
4aiy: R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 'GREEN' SUBSTATE, AVERAGE STRUCTURE
4ins: THE STRUCTURE OF 2ZN PIG INSULIN CRYSTALS AT 1.5 ANGSTROMS RESOLUTION
5aiy: R6 HUMAN INSULIN HEXAMER (SYMMETRIC), NMR, 'RED' SUBSTATE, AVERAGE STRUCTURE
6ins: X-RAY ANALYSIS OF THE SINGLE CHAIN /B29-A1$ PEPTIDE-LINKED INSULIN MOLECULE. A COMPLETELY INACTIVE ANALOGUE
7ins: STRUCTURE OF PORCINE INSULIN COCRYSTALLIZED WITH CLUPEINE Z
9ins: MONOVALENT CATION BINDING IN CUBIC INSULIN CRYSTALS