Protein/ja: Difference between revisions

Protein/ja
Created page with "===構造決定=== タンパク質の3次構造、あるいは複合体の4次構造を発見することは、タンパク質がどのようにその機能を発揮し、どのようにその機能に影響を与えることができるのか、つまり薬物設計において重要な手がかりを提供することができる。タンパク質は回折限界系:en:Optical microscope|光学顕..."
Tags: Mobile edit Mobile web edit
Created page with "遺伝子配列はタンパク質構造よりも多く知られている。さらに、解明された構造セットは、主要な構造決定手法の一つであるX線結晶構造解析で必要とされる条件を容易に適用できるタンパク質に偏っている。特に、球状タンパク質は、X線結晶構造解析に向けた結晶化が比較的容易である。一方、膜タンパク質や大き..."
Tags: Mobile edit Mobile web edit
Line 189: Line 189:
タンパク質の3次構造、あるいは複合体の4次構造を発見することは、タンパク質がどのようにその機能を発揮し、どのようにその機能に影響を与えることができるのか、つまり[[Drug design/ja#Structure-based|薬物設計]]において重要な手がかりを提供することができる。タンパク質は[[:en:Diffraction-limited system|回折限界系]][[:en:Optical microscope|光学顕微鏡]]で見るには小さすぎるため、その構造を決定するには他の方法を採用しなければならない。一般的な実験手法としては、[[X-ray crystallography/ja|X線結晶構造解析]]と[[protein NMR/ja|NMR分光法]]があり、どちらも[[atom/ja|原子]]レベルの分解能で構造情報を得ることができる。しかし、NMR実験は、原子のペア間の距離のサブセットを推定するための情報を提供することができ、[[:en:distance geometry|距離幾何学]]問題を解くことによって、タンパク質の最終的なコンフォーメーションが決定される。[[Dual polarisation interferometry/ja|二重偏光干渉法]]は、全体的な[[protein conformation/ja|タンパク質のコンフォメーション]]や、相互作用や他の刺激による[[conformational change/ja|コンフォメーション変化]]を測定するための定量的分析法である。[[Circular dichroism/ja|円偏光二色性]]は、タンパク質の内部βシート/αヘリカル組成を決定するためのもう一つの実験技術である。[[:en:Cryoelectron microscopy|クライオ電子顕微鏡]]は、集合した[[ウイルス]]を含む非常に大きなタンパク質複合体に関する低分解能の構造情報を得るために用いられる;[[:en:electron crystallography|電子線結晶学]]と呼ばれる手法でも、特に膜タンパク質の二次元結晶の場合、高分解能の情報が得られる場合がある。解かれた構造は通常、[[Protein Data Bank/ja|Protein Data Bank]] (PDB)に寄託される。これは自由に利用できるリソースで、何千ものタンパク質に関する構造データを、タンパク質の各原子の[[:en:Cartesian coordinates|デカルト座標]]の形で得ることができる。
タンパク質の3次構造、あるいは複合体の4次構造を発見することは、タンパク質がどのようにその機能を発揮し、どのようにその機能に影響を与えることができるのか、つまり[[Drug design/ja#Structure-based|薬物設計]]において重要な手がかりを提供することができる。タンパク質は[[:en:Diffraction-limited system|回折限界系]][[:en:Optical microscope|光学顕微鏡]]で見るには小さすぎるため、その構造を決定するには他の方法を採用しなければならない。一般的な実験手法としては、[[X-ray crystallography/ja|X線結晶構造解析]]と[[protein NMR/ja|NMR分光法]]があり、どちらも[[atom/ja|原子]]レベルの分解能で構造情報を得ることができる。しかし、NMR実験は、原子のペア間の距離のサブセットを推定するための情報を提供することができ、[[:en:distance geometry|距離幾何学]]問題を解くことによって、タンパク質の最終的なコンフォーメーションが決定される。[[Dual polarisation interferometry/ja|二重偏光干渉法]]は、全体的な[[protein conformation/ja|タンパク質のコンフォメーション]]や、相互作用や他の刺激による[[conformational change/ja|コンフォメーション変化]]を測定するための定量的分析法である。[[Circular dichroism/ja|円偏光二色性]]は、タンパク質の内部βシート/αヘリカル組成を決定するためのもう一つの実験技術である。[[:en:Cryoelectron microscopy|クライオ電子顕微鏡]]は、集合した[[ウイルス]]を含む非常に大きなタンパク質複合体に関する低分解能の構造情報を得るために用いられる;[[:en:electron crystallography|電子線結晶学]]と呼ばれる手法でも、特に膜タンパク質の二次元結晶の場合、高分解能の情報が得られる場合がある。解かれた構造は通常、[[Protein Data Bank/ja|Protein Data Bank]] (PDB)に寄託される。これは自由に利用できるリソースで、何千ものタンパク質に関する構造データを、タンパク質の各原子の[[:en:Cartesian coordinates|デカルト座標]]の形で得ることができる。


<div lang="en" dir="ltr" class="mw-content-ltr">
遺伝子配列はタンパク質構造よりも多く知られている。さらに、解明された構造セットは、主要な構造決定手法の一つである[[X-ray crystallography/ja|X線結晶構造解析]]で必要とされる条件を容易に適用できるタンパク質に偏っている。特に、球状タンパク質は、X線結晶構造解析に向けた[[crystallize/ja|結晶化]]が比較的容易である。一方、膜タンパク質や大きなタンパク質複合体は結晶化が困難であり、PDBにはあまり登録されていない。[[Structural genomics/ja|構造ゲノミクス]]の取り組みでは、主要なフォールドクラスの代表的な構造を系統的に解くことで、これらの欠点を改善しようとしている。[[Protein structure prediction/ja|タンパク質構造予測]]法は、実験的に構造が決定されていないタンパク質に対して、もっともらしい構造を生成する手段を提供しようとするものである。
Many more gene sequences are known than protein structures. Further, the set of solved structures is biased toward proteins that can be easily subjected to the conditions required in [[X-ray crystallography]], one of the major structure determination methods. In particular, globular proteins are comparatively easy to [[crystallize]] in preparation for X-ray crystallography. Membrane proteins and large protein complexes, by contrast, are difficult to crystallize and are underrepresented in the PDB. [[Structural genomics]] initiatives have attempted to remedy these deficiencies by systematically solving representative structures of major fold classes. [[Protein structure prediction]] methods attempt to provide a means of generating a plausible structure for proteins whose structures have not been experimentally determined.
</div>


===構造予測===
===構造予測===