Citric acid cycle/ja: Difference between revisions
Citric acid cycle/ja
Tags: Mobile edit Mobile web edit |
No edit summary Tags: Mobile edit Mobile web edit |
||
Line 13: | Line 13: | ||
クエン酸サイクルの構成要素と反応のいくつかは、1930年代に[[:en:Albert Szent-Györgyi|アルバート・ツェント=ギョルギ]]の研究によって確立された。彼は1937年、サイクルの構成要素である[[fumaric acid/ja|フマル酸]]に関する発見で[[:en:Nobel Prize in Physiology or Medicine|ノーベル生理学・医学賞]]を受賞した。彼はこの発見を、ハトの胸筋の研究によって行った。この組織はラタピーミルで分解され、水溶液中で放出された後も酸化能力を維持するため、ハトの胸筋は酸化反応の研究に非常に適していた。クエン酸サイクル自体は、1937年に[[:en:University of Sheffield|シェフィールド大学]]に在籍していた[[:en:Hans Adolf Krebs|ハンス・アドルフ・クレブス]]と[[:en:William Arthur Johnson (biochemist)|ウィリアム・アーサー・ジョンソン]]によって最終的に同定され、この功績で前者は1953年に[[:en:Nobel Prize for Physiology or Medicine|ノーベル生理学・医学賞]]を受賞した。 | クエン酸サイクルの構成要素と反応のいくつかは、1930年代に[[:en:Albert Szent-Györgyi|アルバート・ツェント=ギョルギ]]の研究によって確立された。彼は1937年、サイクルの構成要素である[[fumaric acid/ja|フマル酸]]に関する発見で[[:en:Nobel Prize in Physiology or Medicine|ノーベル生理学・医学賞]]を受賞した。彼はこの発見を、ハトの胸筋の研究によって行った。この組織はラタピーミルで分解され、水溶液中で放出された後も酸化能力を維持するため、ハトの胸筋は酸化反応の研究に非常に適していた。クエン酸サイクル自体は、1937年に[[:en:University of Sheffield|シェフィールド大学]]に在籍していた[[:en:Hans Adolf Krebs|ハンス・アドルフ・クレブス]]と[[:en:William Arthur Johnson (biochemist)|ウィリアム・アーサー・ジョンソン]]によって最終的に同定され、この功績で前者は1953年に[[:en:Nobel Prize for Physiology or Medicine|ノーベル生理学・医学賞]]を受賞した。 | ||
== 概要 == | == 概要 == | ||
{{Anchor|Overview}} | {{Anchor|Overview}} | ||
[[File:Acetyl-CoA-2D_colored.svg|thumb|upright=1.6|アセチル-CoAの構造図: 左側の青い部分が[[Acetyl/ja|アセチル基]]、黒い部分が[[coenzyme A/ja|補酵素A]]である。]] | [[File:Acetyl-CoA-2D_colored.svg|thumb|upright=1.6|アセチル-CoAの構造図: 左側の青い部分が[[Acetyl/ja|アセチル基]]、黒い部分が[[coenzyme A/ja|補酵素A]]である。]] | ||
クエン酸サイクルは、[[carbohydrate/ja|炭水化物]]、[[fat/ja|脂肪]]、[[protein/ja|タンパク質]]をつなぐ[[metabolic pathwary/ja|代謝経路]]である。このサイクルの[[Chemical reaction/ja|反応]]は8つの[[enzymes/ja|酵素]]によって行われ、[[acetate/ja|酢酸]](炭素数2の分子)をアセチル-CoAの形で完全に酸化し、それぞれ2分子の二酸化炭素と水にする。糖、脂肪、タンパク質の[[catabolism | クエン酸サイクルは、[[carbohydrate/ja|炭水化物]]、[[fat/ja|脂肪]]、[[protein/ja|タンパク質]]をつなぐ[[metabolic pathwary/ja|代謝経路]]である。このサイクルの[[Chemical reaction/ja|反応]]は8つの[[enzymes/ja|酵素]]によって行われ、[[acetate/ja|酢酸]](炭素数2の分子)をアセチル-CoAの形で完全に酸化し、それぞれ2分子の二酸化炭素と水にする。糖、脂肪、タンパク質の[[catabolism/ja|異化]]によって、炭素数2の有機生成物アセチル-CoAが生成され、クエン酸サイクルに入る。サイクルの反応はまた、3当量の[[nicotinamide adenine dinucleotide/ja|ニコチンアミドアデニンジヌクレオチド]](NAD<sup>+</sup>)を3当量の還元型[[Nicotinamide adenine dinucleotide/ja|NAD<sup>+</sup>]](NADH)に変換する、 [[flavin adenine dinucleotide/ja|フラビンアデニンジヌクレオチド]](FAD)を1当量の[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]に、[[guanosine diphosphate/ja|グアノシン二リン酸]](GDP)と無機[[phosphate/ja|リン酸]](P<sub>i</sub>)をそれぞれ1当量の[[guanosine triphosphate/ja|グアノシン三リン酸]](GTP)に変換する。クエン酸サイクルによって生成されたNADHとFADH<sub>2</sub>は、[[oxidative phosphorylation/ja|酸化的リン酸化]]経路によってエネルギー豊富なATPを生成するために使われる。 | ||
アセチル-CoAの主な供給源のひとつは、[[glycolysis/ja|解糖]]による糖の分解で、[[pyruvic acid/ja|ピルビン酸]]が得られ、それが[[pyruvate dehydrogenase complex/ja|ピルビン酸デヒドロゲナーゼ複合体]]によって脱炭酸され、以下の反応スキームに従ってアセチル-CoAを生成する: | アセチル-CoAの主な供給源のひとつは、[[glycolysis/ja|解糖]]による糖の分解で、[[pyruvic acid/ja|ピルビン酸]]が得られ、それが[[pyruvate dehydrogenase complex/ja|ピルビン酸デヒドロゲナーゼ複合体]]によって脱炭酸され、以下の反応スキームに従ってアセチル-CoAを生成する: |