脂肪酸
Fatty acid/ja
化学、特に生化学において、脂肪酸とは脂肪族鎖を持つカルボン酸であり、飽和または不飽和のいずれかである。天然に存在する脂肪酸のほとんどは、4から28までの偶数の炭素原子を持つ非分岐鎖を持つ。脂肪酸は微細藻類のようないくつかの種では脂質の主要成分(最大70重量%)であるが、他のいくつかの生物では単独の形では見られず、代わりに3つの主要なクラスのエステルとして存在する: トリグリセリド、リン脂質、コレステリルエステルである。これらのいずれの形態においても、脂肪酸は動物にとって重要な食事燃料源であると同時に、細胞にとって重要な構造成分でもある。

歴史
脂肪酸(acide gras)の概念は1813年にMichel Eugène Chevreulによって導入された: しかし、彼は当初、次のような用語も使用していた:graisse acide と acide huileux (「酸脂肪」と「油性酸」)。
脂肪酸の種類
脂肪酸は、長さ、飽和と不飽和、偶数と奇数の炭素含有量、直鎖と分岐など、さまざまな方法で分類される。
脂肪酸の長さ=
- 短鎖脂肪酸(SCFA)とは、炭素数が5以下の脂肪族末端を持つ脂肪酸である(例えば酪酸)
- 中鎖脂肪酸(MCFAs)は炭素数6から12の脂肪族末端を持つ脂肪酸であり、中鎖トリグリセリドを形成することができる。
- 長鎖脂肪酸(LCFA)は、炭素数13から21の脂肪族末端を持つ脂肪酸である。
- 超長鎖脂肪酸(VLCFA)は、炭素数22以上の脂肪族テールを持つ脂肪酸である。
飽和脂肪酸
飽和脂肪酸はC=C二重結合を持たない。飽和脂肪酸はCH3(CH2)nCOOHの式を持つ。重要な飽和脂肪酸はステアリン酸(n = 16)であり、これを水酸化ナトリウムで中和すると石鹸の最も一般的な形態となる。
一般名 | 化学構造 | C:D |
---|---|---|
Caprylic acid/ja | CH3(CH2)6COOH | 8:0 |
Capric acid/ja | CH3(CH2)8COOH | 10:0 |
Lauric acid/ja | CH3(CH2)10COOH | 12:0 |
Myristic acid/ja | CH3(CH2)12COOH | 14:0 |
Palmitic acid/ja | CH3(CH2)14COOH | 16:0 |
Stearic acid/ja | CH3(CH2)16COOH | 18:0 |
Arachidic acid/ja | CH3(CH2)18COOH | 20:0 |
Behenic acid/ja | CH3(CH2)20COOH | 22:0 |
Lignoceric acid/ja | CH3(CH2)22COOH | 24:0 |
Cerotic acid/ja | CH3(CH2)24COOH | 26:0 |
===不飽和脂肪酸===
不飽和脂肪酸は1つ以上のC=C 二重結合を持つ。C=C二重結合はシスまたはトランス異性体を与える。
- シス型とは、二重結合に隣接する2つの水素原子が鎖の同じ側に突き出ている状態を意味する。二重結合の剛性はそのコンフォメーションを凍結させ、シス異性体の場合は鎖を曲げ、脂肪酸のコンフォメーションの自由度を制限する。シス配置の二重結合が多ければ多いほど、鎖の柔軟性は低くなる。鎖が多くのシス結合を持つ場合、最もアクセスしやすいコンフォーメーションではかなり湾曲する。例えば、二重結合が1つのオレイン酸は「キンク」を持つが、二重結合が2つのリノール酸はより顕著な曲がりを持つ。二重結合が3つのα-リノレン酸は、鉤状の形状を好む。この効果は、脂肪酸が脂質二重層中のリン脂質や脂質滴中のトリグリセリドの一部であるような制限された環境では、シス結合が脂肪酸が密に詰まる能力を制限するため、膜や脂肪の融解温度に影響を与える可能性があるということである。しかし、シス型不飽和脂肪酸は細胞膜の流動性を高めるが、トランス型不飽和脂肪酸はそうではない。
- トランス型とは、隣接する2つの水素原子が鎖の「反対側」にあることを意味する。その結果、鎖はあまり曲がらず、その形状は直鎖飽和脂肪酸に似ている。
天然に存在するほとんどの不飽和脂肪酸では、各二重結合の後に3個(n-3)、6個(n-6)または9個(n-9)の炭素原子があり、全ての二重結合はシス配位を持つ。ほとんどのトランス型脂肪酸(トランス脂肪酸)は自然界には存在せず、人為的な加工(例えば水素添加)の結果である。トランス脂肪酸の一部は、反芻動物(牛や羊など)の乳や肉にも自然に含まれている。これらは反芻動物のルーメンで発酵によって生成される。これらは反芻動物の乳から得られる乳製品にも含まれ、食事から摂取した女性の母乳にも含まれることがある。
飽和脂肪酸と不飽和脂肪酸の間だけでなく、様々な種類の不飽和脂肪酸の間の幾何学的な違いは、生物学的プロセスや生物学的構造(細胞膜など)の構築において重要な役割を果たしている。
一般名 | 化学構造 | Δx | C:D | IUPAC | n−x |
---|---|---|---|---|---|
Myristoleic acid/ja | CH3(CH2)3CH=CH(CH2)7COOH | cis-Δ9 | 14:1 | 14:1(9) | n−5 |
Palmitoleic acid/ja | CH3(CH2)5CH=CH(CH2)7COOH | cis-Δ9 | 16:1 | 16:1(9) | n−7 |
Sapienic acid/ja | CH3(CH2)8CH=CH(CH2)4COOH | cis-Δ6 | 16:1 | 16:1(6) | n−10 |
Oleic acid/ja | CH3(CH2)7CH=CH(CH2)7COOH | cis-Δ9 | 18:1 | 18:1(9) | n−9 |
Elaidic acid/ja | CH3(CH2)7CH=CH(CH2)7COOH | trans-Δ9 | 18:1 | 18:1(9t) | n−9 |
Vaccenic acid/ja | CH3(CH2)5CH=CH(CH2)9COOH | trans-Δ11 | 18:1 | 18:1(11t) | n−7 |
Linoleic acid/ja | CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH | cis,cis-Δ9,Δ12 | 18:2 | 18:2(9,12) | n−6 |
Linoelaidic acid/ja | CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH | trans,trans-Δ9,Δ12 | 18:2 | 18:2(9t,12t) | n−6 |
α-Linolenic acid/ja | CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH | cis,cis,cis-Δ9,Δ12,Δ15 | 18:3 | 18:3(9,12,15) | n−3 |
Arachidonic acid/ja | CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOHNIST | cis,cis,cis,cis-Δ5Δ8,Δ11,Δ14 | 20:4 | 20:4(5,8,11,14) | n−6 |
エイコサペンタエン酸 | CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH | cis,cis,cis,cis,cis-Δ5,Δ8,Δ11,Δ14,Δ17 | 20:5 | 20:5(5,8,11,14,17) | n−3 |
Erucic acid/ja | CH3(CH2)7CH=CH(CH2)11COOH | cis-Δ13 | 22:1 | 22:1(13) | n−9 |
ドコサヘキサエン酸 | CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)2COOH | cis,cis,cis,cis,cis,cis-Δ4,Δ7,Δ10,Δ13,Δ16,Δ19 | 22:6 | 22:6(4,7,10,13,16,19) | n−3 |
偶数鎖脂肪酸と奇数鎖脂肪酸=
ほとんどの脂肪酸は、ステアリン酸(C18)やオレイン酸(C18)など、偶数個の炭素原子からなる偶数鎖脂肪酸である。奇数の炭素原子を持つ脂肪酸もあり、それらは奇数鎖脂肪酸(OCFA)と呼ばれる。最も一般的なOCFAは、飽和C15およびC17誘導体であるペンタデカン酸およびヘプタデカン酸であり、それぞれ乳製品に含まれている。分子レベルでは、OCFAは偶数鎖の誘導体とはわずかに異なる方法で生合成され、代謝される。
===分岐===
ほとんどの一般的な脂肪酸は直鎖化合物であり、主炭化水素鎖に側鎖基として結合した追加の炭素原子はない。分岐鎖脂肪酸は、炭化水素鎖に結合した1つ以上のメチル基を含む。
命名法
===炭素原子番号===
天然に存在する脂肪酸のほとんどは、炭素原子の非分岐鎖を持ち、一方の末端にカルボキシル基(-COOH)、もう一方の末端にメチル基(-CH3)を持つ。
The position of each carbon atom in the backbone of a fatty acid is usually indicated by counting from 1 at the −COOH end. Carbon number x is often abbreviated C-x (or sometimes Cx), with x = 1, 2, 3, etc. This is the numbering scheme recommended by the IUPAC.
Another convention uses letters of the Greek alphabet in sequence, starting with the first carbon after the carboxyl group. Thus carbon α (alpha) is C-2, carbon β (beta) is C-3, and so forth.
Although fatty acids can be of diverse lengths, in this second convention the last carbon in the chain is always labelled as ω (omega), which is the last letter in the Greek alphabet. A third numbering convention counts the carbons from that end, using the labels "ω", "ω−1", "ω−2". Alternatively, the label "ω−x" is written "n−x", where the "n" is meant to represent the number of carbons in the chain.
In either numbering scheme, the position of a double bond in a fatty acid chain is always specified by giving the label of the carbon closest to the carboxyl end. Thus, in an 18 carbon fatty acid, a double bond between C-12 (or ω−6) and C-13 (or ω−5) is said to be "at" position C-12 or ω−6. The IUPAC naming of the acid, such as "octadec-12-enoic acid" (or the more pronounceable variant "12-octadecanoic acid") is always based on the "C" numbering.
The notation Δx,y,... is traditionally used to specify a fatty acid with double bonds at positions x,y,.... (The capital Greek letter "Δ" (delta) corresponds to Roman "D", for Double bond). Thus, for example, the 20-carbon arachidonic acid is Δ5,8,11,14, meaning that it has double bonds between carbons 5 and 6, 8 and 9, 11 and 12, and 14 and 15.
In the context of human diet and fat metabolism, unsaturated fatty acids are often classified by the position of the double bond closest between to the ω carbon (only), even in the case of multiple double bonds such as the essential fatty acids. Thus linoleic acid (18 carbons, Δ9,12), γ-linolenic acid (18-carbon, Δ6,9,12), and arachidonic acid (20-carbon, Δ5,8,11,14) are all classified as "ω−6" fatty acids; meaning that their formula ends with –CH=CH–CH
2–CH
2–CH
2–CH
2–CH
3.
Fatty acids with an odd number of carbon atoms are called odd-chain fatty acids, whereas the rest are even-chain fatty acids. The difference is relevant to gluconeogenesis.
Naming of fatty acids
The following table describes the most common systems of naming fatty acids.
Nomenclature | Examples | Explanation |
---|---|---|
Trivial | Palmitoleic acid | Trivial names (or common names) are non-systematic historical names, which are the most frequent naming system used in literature. Most common fatty acids have trivial names in addition to their systematic names (see below). These names frequently do not follow any pattern, but they are concise and often unambiguous. |
Systematic | cis-9-octadec-9-enoic acid (9Z)-octadec-9-enoic acid |
Systematic names (or IUPAC names) derive from the standard IUPAC Rules for the Nomenclature of Organic Chemistry, published in 1979, along with a recommendation published specifically for lipids in 1977. Carbon atom numbering begins from the carboxylic end of the molecule backbone. Double bonds are labelled with cis-/trans- notation or E-/Z- notation, where appropriate. This notation is generally more verbose than common nomenclature, but has the advantage of being more technically clear and descriptive. |
Δx | cis-Δ9, cis-Δ12 octadecadienoic acid | In Δx (or delta-x) nomenclature, each double bond is indicated by Δx, where the double bond begins at the xth carbon–carbon bond, counting from carboxylic end of the molecule backbone. Each double bond is preceded by a cis- or trans- prefix, indicating the configuration of the molecule around the bond. For example, linoleic acid is designated "cis-Δ9, cis-Δ12 octadecadienoic acid". This nomenclature has the advantage of being less verbose than systematic nomenclature, but is no more technically clear or descriptive. |
n−x (or ω−x) |
n−3 (or ω−3) |
n−x (n minus x; also ω−x or omega-x) nomenclature both provides names for individual compounds and classifies them by their likely biosynthetic properties in animals. A double bond is located on the xth carbon–carbon bond, counting from the methyl end of the molecule backbone. For example, α-linolenic acid is classified as a n−3 or omega-3 fatty acid, and so it is likely to share a biosynthetic pathway with other compounds of this type. The ω−x, omega-x, or "omega" notation is common in popular nutritional literature, but IUPAC has deprecated it in favor of n−x notation in technical documents. The most commonly researched fatty acid biosynthetic pathways are n−3 and n−6. |
Lipid numbers | 18:3 18:3n3 18:3, cis,cis,cis-Δ9,Δ12,Δ15 18:3(9,12,15) |
Lipid numbers take the form C:D, where C is the number of carbon atoms in the fatty acid and D is the number of double bonds in the fatty acid. If D is more than one, the double bonds are assumed to be interrupted by CH 2 units, i.e., at intervals of 3 carbon atoms along the chain. For instance, α-linolenic acid is an 18:3 fatty acid and its three double bonds are located at positions Δ9, Δ12, and Δ15. This notation can be ambiguous, as some different fatty acids can have the same C:D numbers. Consequently, when ambiguity exists this notation is usually paired with either a Δx or n−x term. For instance, although α-linolenic acid and γ-linolenic acid are both 18:3, they may be unambiguously described as 18:3n3 and 18:3n6 fatty acids, respectively. For the same purpose, IUPAC recommends using a list of double bond positions in parentheses, appended to the C:D notation. For instance, IUPAC recommended notations for α- and γ-linolenic acid are 18:3(9,12,15) and 18:3(6,9,12), respectively. |
Free fatty acids
When circulating in the plasma (plasma fatty acids), not in their ester, fatty acids are known as non-esterified fatty acids (NEFAs) or free fatty acids (FFAs). FFAs are always bound to a transport protein, such as albumin.
FFAs also form from triglyceride food oils and fats by hydrolysis, contributing to the characteristic rancid odor. An analogous process happens in biodiesel with risk of part corrosion.
Production
Industrial
Fatty acids are usually produced industrially by the hydrolysis of triglycerides, with the removal of glycerol (see oleochemicals). Phospholipids represent another source. Some fatty acids are produced synthetically by hydrocarboxylation of alkenes.
By animals
In animals, fatty acids are formed from carbohydrates predominantly in the liver, adipose tissue, and the mammary glands during lactation.
Carbohydrates are converted into pyruvate by glycolysis as the first important step in the conversion of carbohydrates into fatty acids. Pyruvate is then decarboxylated to form acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into cytosol where the synthesis of fatty acids occurs. This cannot occur directly. To obtain cytosolic acetyl-CoA, citrate (produced by the condensation of acetyl-CoA with oxaloacetate) is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol. There it is cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate. The oxaloacetate is returned to the mitochondrion as malate. The cytosolic acetyl-CoA is carboxylated by acetyl-CoA carboxylase into malonyl-CoA, the first committed step in the synthesis of fatty acids.
Malonyl-CoA is then involved in a repeating series of reactions that lengthens the growing fatty acid chain by two carbons at a time. Almost all natural fatty acids, therefore, have even numbers of carbon atoms. When synthesis is complete the free fatty acids are nearly always combined with glycerol (three fatty acids to one glycerol molecule) to form triglycerides, the main storage form of fatty acids, and thus of energy in animals. However, fatty acids are also important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus).
The "uncombined fatty acids" or "free fatty acids" found in the circulation of animals come from the breakdown (or lipolysis) of stored triglycerides. Because they are insoluble in water, these fatty acids are transported bound to plasma albumin. The levels of "free fatty acids" in the blood are limited by the availability of albumin binding sites. They can be taken up from the blood by all cells that have mitochondria (with the exception of the cells of the central nervous system). Fatty acids can only be broken down in mitochondria, by means of beta-oxidation followed by further combustion in the citric acid cycle to CO2 and water. Cells in the central nervous system, although they possess mitochondria, cannot take free fatty acids up from the blood, as the blood–brain barrier is impervious to most free fatty acids, excluding short-chain fatty acids and medium-chain fatty acids. These cells have to manufacture their own fatty acids from carbohydrates, as described above, in order to produce and maintain the phospholipids of their cell membranes, and those of their organelles.
Variation between animal species
Studies on the cell membranes of mammals and reptiles discovered that mammalian cell membranes are composed of a higher proportion of polyunsaturated fatty acids (DHA, omega-3 fatty acid) than reptiles. Studies on bird fatty acid composition have noted similar proportions to mammals but with 1/3rd less omega-3 fatty acids as compared to omega-6 for a given body size. This fatty acid composition results in a more fluid cell membrane but also one that is permeable to various ions (H+
& Na+
), resulting in cell membranes that are more costly to maintain. This maintenance cost has been argued to be one of the key causes for the high metabolic rates and concomitant warm-bloodedness of mammals and birds. However polyunsaturation of cell membranes may also occur in response to chronic cold temperatures as well. In fish increasingly cold environments lead to increasingly high cell membrane content of both monounsaturated and polyunsaturated fatty acids, to maintain greater membrane fluidity (and functionality) at the lower temperatures.
Fatty acids in dietary fats
The following table gives the fatty acid, vitamin E and cholesterol composition of some common dietary fats.
Saturated | Monounsaturated | Polyunsaturated | Cholesterol | Vitamin E | |
---|---|---|---|---|---|
g/100g | g/100g | g/100g | mg/100g | mg/100g | |
Animal fats | |||||
Duck fat | 33.2 | 49.3 | 12.9 | 100 | 2.70 |
Lard | 40.8 | 43.8 | 9.6 | 93 | 0.60 |
Tallow | 49.8 | 41.8 | 4.0 | 109 | 2.70 |
Butter | 54.0 | 19.8 | 2.6 | 230 | 2.00 |
Vegetable fats | |||||
Coconut oil | 85.2 | 6.6 | 1.7 | 0 | .66 |
Cocoa butter | 60.0 | 32.9 | 3.0 | 0 | 1.8 |
Palm kernel oil | 81.5 | 11.4 | 1.6 | 0 | 3.80 |
Palm oil | 45.3 | 41.6 | 8.3 | 0 | 33.12 |
Cottonseed oil | 25.5 | 21.3 | 48.1 | 0 | 42.77 |
Wheat germ oil | 18.8 | 15.9 | 60.7 | 0 | 136.65 |
Soybean oil | 14.5 | 23.2 | 56.5 | 0 | 16.29 |
Olive oil | 14.0 | 69.7 | 11.2 | 0 | 5.10 |
Corn oil | 12.7 | 24.7 | 57.8 | 0 | 17.24 |
Sunflower oil | 11.9 | 20.2 | 63.0 | 0 | 49.00 |
Safflower oil | 10.2 | 12.6 | 72.1 | 0 | 40.68 |
Hemp oil | 10 | 15 | 75 | 0 | 12.34 |
Canola/Rapeseed oil | 5.3 | 64.3 | 24.8 | 0 | 22.21 |
Reactions of fatty acids
Fatty acids exhibit reactions like other carboxylic acids, i.e. they undergo esterification and acid-base reactions.
Acidity
Fatty acids do not show a great variation in their acidities, as indicated by their respective pKa. Nonanoic acid, for example, has a pKa of 4.96, being only slightly weaker than acetic acid (4.76). As the chain length increases, the solubility of the fatty acids in water decreases, so that the longer-chain fatty acids have minimal effect on the pH of an aqueous solution. Near neutral pH, fatty acids exist at their conjugate bases, i.e. oleate, etc.
Solutions of fatty acids in ethanol can be titrated with sodium hydroxide solution using phenolphthalein as an indicator. This analysis is used to determine the free fatty acid content of fats; i.e., the proportion of the triglycerides that have been hydrolyzed.
Neutralization of fatty acids, one form of saponification (soap-making), is a widely practiced route to metallic soaps.
Hydrogenation and hardening
Hydrogenation of unsaturated fatty acids is widely practiced. Typical conditions involve 2.0–3.0 MPa of H2 pressure, 150 °C, and nickel supported on silica as a catalyst. This treatment affords saturated fatty acids. The extent of hydrogenation is indicated by the iodine number. Hydrogenated fatty acids are less prone toward rancidification. Since the saturated fatty acids are higher melting than the unsaturated precursors, the process is called hardening. Related technology is used to convert vegetable oils into margarine. The hydrogenation of triglycerides (vs fatty acids) is advantageous because the carboxylic acids degrade the nickel catalysts, affording nickel soaps. During partial hydrogenation, unsaturated fatty acids can be isomerized from cis to trans configuration.
More forcing hydrogenation, i.e. using higher pressures of H2 and higher temperatures, converts fatty acids into fatty alcohols. Fatty alcohols are, however, more easily produced from fatty acid esters.
In the Varrentrapp reaction certain unsaturated fatty acids are cleaved in molten alkali, a reaction which was, at one point of time, relevant to structure elucidation.
Auto-oxidation and rancidity
Unsaturated fatty acids and their esters undergo auto-oxidation, which involves replacement of a C-H bond with C-O bond. The process requires oxygen (air) and is accelerated by the presence of traces of metals, which serve as catalysts. Doubly unsaturated fatty acids are particularly prone to this reaction. Vegetable oils resist this process to a small degree because they contain antioxidants, such as tocopherol. Fats and oils often are treated with chelating agents such as citric acid to remove the metal catalysts.
Ozonolysis
Unsaturated fatty acids are susceptible to degradation by ozone. This reaction is practiced in the production of azelaic acid ((CH2)7(CO2H)2) from oleic acid.
Circulation
Digestion and intake
Short- and medium-chain fatty acids are absorbed directly into the blood via intestine capillaries and travel through the portal vein just as other absorbed nutrients do. However, long-chain fatty acids are not directly released into the intestinal capillaries. Instead they are absorbed into the fatty walls of the intestine villi and reassemble again into triglycerides. The triglycerides are coated with cholesterol and protein (protein coat) into a compound called a chylomicron.
From within the cell, the chylomicron is released into a lymphatic capillary called a lacteal, which merges into larger lymphatic vessels. It is transported via the lymphatic system and the thoracic duct up to a location near the heart (where the arteries and veins are larger). The thoracic duct empties the chylomicrons into the bloodstream via the left subclavian vein. At this point the chylomicrons can transport the triglycerides to tissues where they are stored or metabolized for energy.
Metabolism
Fatty acids are broken down to CO2 and water by the intra-cellular mitochondria through beta oxidation and the citric acid cycle. In the final step (oxidative phosphorylation), reactions with oxygen release a lot of energy, captured in the form of large quantities of ATP. Many cell types can use either glucose or fatty acids for this purpose, but fatty acids release more energy per gram. Fatty acids (provided either by ingestion or by drawing on triglycerides stored in fatty tissues) are distributed to cells to serve as a fuel for muscular contraction and general metabolism.
Essential fatty acids
Fatty acids that are required for good health but cannot be made in sufficient quantity from other substrates, and therefore must be obtained from food, are called essential fatty acids. There are two series of essential fatty acids: one has a double bond three carbon atoms away from the methyl end; the other has a double bond six carbon atoms away from the methyl end. Humans lack the ability to introduce double bonds in fatty acids beyond carbons 9 and 10, as counted from the carboxylic acid side. Two essential fatty acids are linoleic acid (LA) and alpha-linolenic acid (ALA). These fatty acids are widely distributed in plant oils. The human body has a limited ability to convert ALA into the longer-chain omega-3 fatty acids — eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which can also be obtained from fish. Omega-3 and omega-6 fatty acids are biosynthetic precursors to endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties.
Distribution
Blood fatty acids adopt distinct forms in different stages in the blood circulation. They are taken in through the intestine in chylomicrons, but also exist in very low density lipoproteins (VLDL) and low density lipoproteins (LDL) after processing in the liver. In addition, when released from adipocytes, fatty acids exist in the blood as free fatty acids.
It is proposed that the blend of fatty acids exuded by mammalian skin, together with lactic acid and pyruvic acid, is distinctive and enables animals with a keen sense of smell to differentiate individuals.
Skin
The stratum corneum – the outermost layer of the epidermis – is composed of terminally differentiated and enucleated corneocytes within a lipid matrix. Together with cholesterol and ceramides, free fatty acids form a water-impermeable barrier that prevents evaporative water loss. Generally, the epidermal lipid matrix is composed of an equimolar mixture of ceramides (about 50% by weight), cholesterol (25%), and free fatty acids (15%). Saturated fatty acids 16 and 18 carbons in length are the dominant types in the epidermis, while unsaturated fatty acids and saturated fatty acids of various other lengths are also present. The relative abundance of the different fatty acids in the epidermis is dependent on the body site the skin is covering. There are also characteristic epidermal fatty acid alterations that occur in psoriasis, atopic dermatitis, and other inflammatory conditions.
Analysis
The chemical analysis of fatty acids in lipids typically begins with an interesterification step that breaks down their original esters (triglycerides, waxes, phospholipids etc.) and converts them to methyl esters, which are then separated by gas chromatography or analyzed by gas chromatography and mid-infrared spectroscopy.
Separation of unsaturated isomers is possible by silver ion complemented thin-layer chromatography. Other separation techniques include high-performance liquid chromatography (with short columns packed with silica gel with bonded phenylsulfonic acid groups whose hydrogen atoms have been exchanged for silver ions). The role of silver lies in its ability to form complexes with unsaturated compounds.
産業上の利用
脂肪酸は主に石けんの製造に使われ、化粧品として、また金属石けんの場合は潤滑剤として使われる。脂肪酸はまた、メチルエステルを介して脂肪アルコールや脂肪アミンに変換され、これらは界面活性剤、洗剤、潤滑油の前駆体となる。その他の用途としては、乳化剤、テクスチャー付与剤、湿潤剤、消泡剤、または安定化剤としての使用が挙げられる。
脂肪酸とより単純なアルコールとのエステル(メチルエステル、エチルエステル、n-プロピルエステル、イソプロピルエステル、ブチルエステルなど)は、化粧品などのパーソナルケア製品のエモリエント剤や合成潤滑油として使用される。脂肪酸と、ソルビトール、エチレングリコール、ジエチレングリコール、ポリエチレングリコールなどのより複雑なアルコールとのエステルは、食品に消費されたり、パーソナルケアや水処理に使用されたり、合成潤滑油や金属加工用の流体として使用される。