Glucagon-like peptide-1/ja: Difference between revisions

From Azupedia
Glucagon-like peptide-1/ja
Jump to navigation Jump to search
Tags: Mobile edit Mobile web edit
Created page with "GLP-1は二相性パターンで放出され、10-15分後に初期相が、続いて食事摂取後30-60分後に第二相が長く続く。L細胞の大部分は遠位回腸と結腸に存在するため、初期相は神経シグナル、腸ペプチドまたは神経伝達物質によって説明される可能性が高い。他の証拠によると、近位空腸にあるL細胞の量..."
Line 22: Line 22:
GLP-1は分泌顆粒にパッケージされ、主に[[ileum/ja|回腸]]と結腸の遠位に位置するが、[[jejunum/ja|空腸]]と[[duodenum/ja|十二指腸]]にも存在する腸管L細胞によって[[hepatic portal system/ja|肝門脈系]]に分泌される。L細胞は開口型の三角形の[[epithelial cells/ja|上皮細胞]]で、[[Lumen (anatomy)/ja|内腔]]や神経血管組織と直接接しており、それに応じて様々な[[nutrient/ja|栄養]]、[[neural/ja|神経]]、[[endocrine/ja|内分泌]]因子によって刺激される。
GLP-1は分泌顆粒にパッケージされ、主に[[ileum/ja|回腸]]と結腸の遠位に位置するが、[[jejunum/ja|空腸]]と[[duodenum/ja|十二指腸]]にも存在する腸管L細胞によって[[hepatic portal system/ja|肝門脈系]]に分泌される。L細胞は開口型の三角形の[[epithelial cells/ja|上皮細胞]]で、[[Lumen (anatomy)/ja|内腔]]や神経血管組織と直接接しており、それに応じて様々な[[nutrient/ja|栄養]]、[[neural/ja|神経]]、[[endocrine/ja|内分泌]]因子によって刺激される。


<div lang="en" dir="ltr" class="mw-content-ltr">
GLP-1は[[phase (pharmacology)/ja|二相性]]パターンで放出され、10-15分後に初期相が、続いて食事摂取後30-60分後に第二相が長く続く。L細胞の大部分は遠位[[ileum/ja|回腸]]と結腸に存在するため、初期相は神経シグナル、腸ペプチドまたは[[neurotransmitters/ja|神経伝達物質]]によって説明される可能性が高い。他の証拠によると、近位[[jejunum/ja|空腸]]にあるL細胞の量は、管腔内の栄養素と直接接触することによって初期段階の分泌を説明するのに十分である。あまり議論の余地はないが、第2相は消化された[[nutrients/ja|栄養素]]によるL細胞の直接的な刺激によって引き起こされる可能性が高い。したがって、[[gastric emptying/ja|胃排出]]の速度は、直接刺激が起こる[[small intestines/ja|小腸]]への栄養素の侵入を制御するため、考慮すべき重要な側面である。GLP-1の作用の一つは、[[gastric emptying/ja|胃排出]]を抑制することであり、その結果、[[postprandial/ja|食後]]の活性化によってGLP-1自身の[[secretion/ja|分泌]]が遅くなる。
GLP-1 is released in a [[phase (pharmacology)|biphasic]] pattern with an early phase after 10–15 minutes followed by a longer second phase after 30–60 minutes upon meal ingestion. As the majority of L-cells are located in the distal [[ileum]] and colon, the early phase is likely explained by neural signalling, gut peptides or [[neurotransmitters]]. Other evidence suggest that the amount of L-cells located in the proximal [[jejunum]] is sufficient to account for the early phase secretion through direct contact with luminal nutrients. Less controversially, the second phase is likely caused by direct stimulation of L-cells by digested [[nutrients]]. The rate of [[gastric emptying]] is therefore an important aspect to consider, as it regulates the entry of nutrients into the [[small intestines]] where the direct stimulation occurs. One of the actions of GLP-1 is to inhibit [[gastric emptying]], thus slowing down its own [[secretion]] upon [[postprandial]] activation.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
<div lang="en" dir="ltr" class="mw-content-ltr">

Revision as of 19:58, 11 March 2024

GLP-1と糖尿病

グルカゴン様ペプチド-1GLP-1)は、プログルカゴンペプチドの組織特異的翻訳後プロセシングに由来する30または31アミノ酸長のペプチドホルモンである。GLP-1は、腸内分泌L細胞および食物摂取時に脳幹の孤束路核内の特定のニューロンによって産生および分泌される。初期生成物であるGLP-1 (1-37)は、アミド化およびタンパク質分解切断を受けやすく、その結果、2つの切断された等価な生物学的活性型であるGLP-1 (7-36)アミドおよびGLP-1 (7-37)が生じる。活性型GLP-1のタンパク質二次構造は、アミノ酸13-20位と24-35位の2つのα-ヘリックスをリンカー領域で隔てている。

グルコース依存性インスリン分泌促進ペプチド(GIP)と並んで、GLP-1はインクレチンであり、インスリン分泌を促進することにより、グルコース依存的に血糖値を低下させる作用を持つ。インスリン分泌促進作用以外にも、GLP-1は多くの調節作用や保護作用と関連している。GIPとは異なり、GLP-1の作用は2型糖尿病の患者でも維持されている。グルカゴン様ペプチド-1受容体作動薬は、2000年代から糖尿病と肥満の治療薬として認可されるようになった。

内因性GLP-1は主にジペプチジルペプチダーゼ-4(DPP-4)と中性エンドペプチダーゼ24.11(NEP24.11)および腎クリアランスによって速やかに分解され、その結果、半減期は約2分となる。その結果、GLP-1の10~15%しかそのまま循環に到達しないため、空腹時の血漿中濃度は0~15pmol/Lにしかならない。これを克服するために、GLP-1活性を高めるGLP-1受容体作動薬DPP-4阻害薬が開発されてきた。インスリンスルホニルウレアなどの一般的な治療薬とは対照的に、GLP-1ベースの治療は体重減少低血糖のリスクの低下と関連しており、2型糖尿病患者にとって重要な2つの考慮事項である。

遺伝子発現

プログルカゴン遺伝子は、膵臓ランゲルハンス島α細胞)、腸(腸内分泌L細胞)および(尾側脳幹および視床下部)を含むいくつかの臓器で発現している。膵プログルカゴン遺伝子の発現は、空腹時および低血糖誘導時に促進され、インスリンによって抑制される。逆に、腸のプログルカゴン遺伝子発現は空腹時には減少し、食物摂取により刺激される。哺乳類では、転写は3つの細胞型すべてで同一のmRNAを生じ、さらにプログルカゴンと呼ばれる180アミノ酸の前駆体に翻訳される。しかし、組織特異的な翻訳後プロセシング機構の結果、異なる細胞では異なるペプチドが産生される。

膵臓ランゲルハンス島α細胞)では、プログルカゴンプロホルモン変換酵素(PC)2によって切断され、グリセンチン関連膵ペプチド(GRPP)、グルカゴン、介在ペプチド-1(IP-1)、主要プログルカゴンフラグメント(MPGF)を産生する。

腸と脳では、プログルカゴンはPC 1/3によって触媒され、グリセンチンを生じ、さらにGRPPとオキシントモジュリン、GLP-1、介在ペプチド-2(IP-2)、グルカゴン様ペプチド-2GLP-2)に処理される。当初、GLP-1はMGPFのN-末端に適したプログルカゴン(72-108)に対応すると考えられていたが、内因性GLP-1の塩基配列決定実験により、プログルカゴン(78-107)に対応する構造が明らかになり、そこから2つの発見がなされた。第一に、全長GLP-1 (1-37)はエンドペプチダーゼによって生物学的に活性なGLP-1 (7-37)に触媒されることがわかった。第二に、プログルカゴン(108)に対応するグリシンが、C-末端アルギニンアミド化の基質となることが見いだされた。その結果、同様に強力なGLP-1 (7-36)アミドが生じる。ヒトでは分泌されたGLP-1のほとんど全て(80%以上)がアミド化されるが、他の生物種ではかなりの部分がGLP-1 (7-37)のままである。

分泌

GLP-1は分泌顆粒にパッケージされ、主に回腸と結腸の遠位に位置するが、空腸十二指腸にも存在する腸管L細胞によって肝門脈系に分泌される。L細胞は開口型の三角形の上皮細胞で、内腔や神経血管組織と直接接しており、それに応じて様々な栄養神経内分泌因子によって刺激される。

GLP-1は二相性パターンで放出され、10-15分後に初期相が、続いて食事摂取後30-60分後に第二相が長く続く。L細胞の大部分は遠位回腸と結腸に存在するため、初期相は神経シグナル、腸ペプチドまたは神経伝達物質によって説明される可能性が高い。他の証拠によると、近位空腸にあるL細胞の量は、管腔内の栄養素と直接接触することによって初期段階の分泌を説明するのに十分である。あまり議論の余地はないが、第2相は消化された栄養素によるL細胞の直接的な刺激によって引き起こされる可能性が高い。したがって、胃排出の速度は、直接刺激が起こる小腸への栄養素の侵入を制御するため、考慮すべき重要な側面である。GLP-1の作用の一つは、胃排出を抑制することであり、その結果、食後の活性化によってGLP-1自身の分泌が遅くなる。

Fasting plasma concentration of biologically active GLP-1 range between 0 and 15 pmol/L in humans and is increased 2- to 3-fold upon food consumption depending on meal size and nutrient composition. Individual nutrients, such as fatty acids, essential amino acids and dietary fibre have also shown to stimulate GLP-1 secretion.

Sugars have been associated with various signalling pathways, which initiate depolarisation of the L-cell membrane causing an elevated concentration of cytosolic Ca2+ which in turn induce GLP-1 secretion. Fatty acids have been associated with the mobilisation of intracellular Ca2+ stores and subsequently release of Ca2+ into the cytosol. The mechanisms of protein-triggered GLP-1 secretion are less clear, but the amino acid proportion and composition appear important to the stimulatory effect.

Degradation

Once secreted, GLP-1 is extremely susceptible to the catalytic activity of the proteolytic enzyme dipeptidyl peptidase-4 (DPP-4). Specifically, DPP-4 cleaves the peptide bond between Ala8-Glu9 resulting in the abundant GLP-1 (9–36) amide constituting 60–80 % of total GLP-1 in circulation. DPP-4 is widely expressed in multiple tissues and cell types and exists in both a membrane-anchored and soluble circulating form. Notably, DPP-4 is expressed on the surface of endothelial cells, including those located directly adjacent to GLP-1 secretion sites. Consequently, less than 25% of secreted GLP-1 is estimated to leave the gut intact. Additionally, presumably due to the high concentration of DPP-4 found on hepatocytes, 40–50% of the remaining active GLP-1 is degraded across the liver. Thus, due to the activity of DPP-4 only 10–15 % of secreted GLP-1 reaches circulation intact.

Neutral endopeptidase 24.11 (NEP 24.11) is a membrane-bound zinc metallopeptidase widely expressed in several tissues, but found in particularly high concentrations in the kidneys, which is also identified accountable for the rapid degradation of GLP-1. It primarily cleaves peptides at the N-terminal side of aromatic amino acids or hydrophobic amino acids and is estimated to contribute by up to 50% of the GLP-1 degradation. However, the activity only becomes apparent once the degradation of DPP-4 has been prevented, as the majority of GLP-1 reaching the kidneys have already been processed by DPP-4. Similarly, renal clearance appear more significant for the elimination of already inactivated GLP-1.

The resulting half-life of active GLP-1 is approximately 2 minutes, which is however sufficient to activate GLP-1 receptors.

Physiological functions

GLP-1 possesses several physiological properties making it (and its functional analogs) a subject of intensive investigation as a potential treatment of diabetes mellitus, as these actions induce long-term improvements along with the immediate effects. Although reduced GLP-1 secretion has previously been associated with attenuated incretin effect in patients with type 2 diabetes, it is now granted that GLP-1 secretion in patients with type 2 diabetes does not differ from healthy subjects.

The most noteworthy effect of GLP-1 is its ability to promote insulin secretion in a glucose-dependent manner. As GLP-1 binds to GLP-1 receptors expressed on the pancreatic β cells, the receptors couples to G-protein subunits and activates adenylate cyclase that increases the production of cAMP from ATP. Subsequently, activation of secondary pathways, including PKA and Epac2, alters the ion channel activity causing elevated levels of cytosolic Ca2+ that enhances exocytosis of insulin-containing granules. During the process, influx of glucose ensures sufficient ATP to sustain the stimulatory effect.<

Additionally, GLP-1 ensures the β cell insulin stores are replenished to prevent exhaustion during secretion by promoting insulin gene transcription, mRNA stability and biosynthesis. GLP-1 evidently also increases β cell mass by promoting proliferation and neogenesis while inhibiting apoptosis. As both type 1 and 2 diabetes are associated with reduction of functional β cells, this effect is highly interesting regarding diabetes treatment. Considered almost as important as the effect of enhancing insulin secretion, GLP-1 has been shown to inhibit glucagon secretion at glucose levels above fasting levels. Critically, this does not affect the glucagon response to hypoglycemia as this effect is also glucose-dependent. The inhibitory effect is presumably mediated indirectly through somatostatin secretion, but a direct effect cannot be completely excluded.

In the brain, GLP-1 receptor activation has been linked with neurotrophic effects including neurogenesis and neuroprotective effects including reduced necrotic and apoptotic signaling, cell death, and dysfunctions. In the diseased brain, GLP-1 receptor agonist treatment is associated with protection against a range of experimental disease models such as Parkinson's disease, Alzheimer's disease, stroke, traumatic brain injury, and multiple sclerosis. In accordance with the expression of GLP-1 receptor on brainstem and hypothalamus, GLP-1 has been shown to promote satiety and thereby reduce food and water intake. Consequently, diabetic subjects treated with GLP-1 receptor agonists often experience weight loss as opposed to the weight gain commonly induced with other treatment agents.

In the stomach, GLP-1 inhibits gastric emptying, acid secretion and motility, which collectively decrease appetite. By decelerating gastric emptying GLP-1 reduces postprandial glucose excursion which is another attractive property regarding diabetes treatment. However, these gastrointestinal activities are also the reason why subjects treated with GLP-1-based agents occasionally experience nausea.

GLP-1 has also shown signs of carrying out protective and regulatory effects in numerous other tissues, including heart, tongue, adipose, muscles, bones, kidneys, liver and lungs.

Research history

In the 1980s, Svetlana Mojsov worked on the identification of GLP-1 at Massachusetts General Hospital, where she was head of a peptide synthesis facility. To try to identify whether a specific fragment of GLP-q was an incretin, Mojsov created an incretin-antibody and developed ways to track its presence. She identified that a stretch of 31 amino acids in the GLP-1 was an incretin. Mosjov and her collaborators Daniel J. Drucker and Habener showed that small quantities of lab-synthesized GLP-1 could trigger insulin.

Mojsov fought to have her name included in patents, with the Massachusetts General Hospital eventually agreeing to amend four patents to include her name. She received her one-third of drug royalties for one year.

こちらも参照

 

外部リンク


American diabetes association:link-http://diabetes.diabetesjournals.org/content/56/1/8.full