Translations:Pyridoxal phosphate/9/en
Jump to navigation
Jump to search
Pyridoxal phosphate has numerous roles in human body. A few examples below:
- Metabolism and biosynthesis of serotonin. Pyridoxal phosphate is a cofactor of aromatic L-amino acids decarboxylase. This allows for conversion of 5-hydroxytryptophan (5-HTP) into serotonine (5-HT). This reaction takes place in serotonergic neurons.
- Metabolism and biosynthesis of histamine. Pyridoxal phosphate is a cofactor of L-histidine decarboxylase. This allows for conversion of histidine into histamine. This reaction takes place in Golgi apparatus in mast cells and in basophils. Next, histamine is stored in granularity in mast cells as a complex with acid residues of heparin proteoglycan while in basophils as a complex with chondroitine sulfate.
- Metabolism and biosynthesis of GABA (γ-aminobutyric acid). Pyridoxal phosphate is a cofactor of glutamic acid decarboxylase (GAD). This allows for conversion of glutamate into GABA. Reaction takes place in cytoplasm of termination of GABA-ergic neurons, therefore vitamin B6 deficiency may cause epileptic seizures in children. Pyridoxal phosphate also participates in the oxidative deamination of GABA, where it is a cofactor of GABA aminotransferase.
- Metabolism of ornithine. Pyridoxal phosphate is a cofactor of ornithine carboxylase.
- Transamination. Pyridoxal phosphate takes part in decomposition and synthesis of amino acids, fats, and carbohydrates, and in the biosynthesis of hormones, neurotransmitters, and heme.