Translations:Bacillus subtilis/32/en
21st century
- As a model organism, B. subtilis is commonly used in laboratory studies directed at discovering the fundamental properties and characteristics of Gram-positive spore-forming bacteria. In particular, the basic principles and mechanisms underlying formation of the durable endospore have been deduced from studies of spore formation in B. subtilis.
- Its surface-binding properties play a role in safe radionuclide waste [e.g. thorium (IV) and plutonium (IV)] disposal.
- Due to its excellent fermentation properties, with high product yields (20 to 25 gram per litre) it is used to produce various enzymes, such as amylase and proteases.
- B. subtilis is used as a soil inoculant in horticulture and agriculture.
- It may provide some benefit to saffron growers by speeding corm growth and increasing stigma biomass yield.
- It is used as an "indicator organism" during gas sterilization procedures, to ensure a sterilization cycle has completed successfully. Specifically B. subtilis endospores are used to verify that a cycle has reached spore-destroying conditions.
- B. subtilis has been found to act as a useful bioproduct fungicide that prevents the growth of Monilinia vaccinii-corymbosi, a.k.a. the mummy berry fungus, without interfering with pollination or fruit qualities.
- Both metabolically active and non-metabolically active B. subtilis cells have been shown to reduce gold (III) to gold (I) and gold (0) when oxygen is present. This biotic reduction plays a role in gold cycling in geological systems and could potentially be used to recover solid gold from said systems.