Climate change mitigation/ja: Difference between revisions

Climate change mitigation/ja
Created page with "== セクター別緩和{{Anchor|Mitigation by sector}} == {{See also/ja|:en:Greenhouse gas emissions#Emissions by sector}} {{Imageright| {{multiple image | total_width = 500 | image1 = Greenhouse Gas Emissions by Economic Sector.svg | caption1 = 直接排出と間接排出を考慮すると、産業は世界の排出量の中で最も高い割合を占めるセクターである。 | image2 = Global GHG Emissions by Sector 2016.png | caption2 = 2016年におけるセク..."
Created page with "石炭、天然ガス、石油の生産には、しばしば重大なメタン漏洩が伴う。2020年代初頭、一部の政府はこの問題の規模を認識し、規制を導入した。油井やガス井、処理施設におけるメタン漏洩は、ガスを国際的に容易に取引できる国では費用対効果の高い解決策である。イランやトルクメニスタンなどガスが安価な国では漏洩が発生してい..."
Tags: Mobile edit Mobile web edit
 
(17 intermediate revisions by the same user not shown)
Line 307: Line 307:
===農業、林業、土地利用===
===農業、林業、土地利用===
[[File:Environmental-impact-of-food-by-life-cycle-stage.png|thumb|upright=1.35|異なる食品のサプライチェーン全体における温室効果ガス排出量。緩和の観点から推奨される食品と推奨されない食品を示している。]]
[[File:Environmental-impact-of-food-by-life-cycle-stage.png|thumb|upright=1.35|異なる食品のサプライチェーン全体における温室効果ガス排出量。緩和の観点から推奨される食品と推奨されない食品を示している。]]
{{See also/ja|:en:Greenhouse gas emissions from agriculture|:en:Environmental impact of meat production|:en:Sustainable agriculture}}


<div lang="en" dir="ltr" class="mw-content-ltr">
温室効果ガス排出量のほぼ20%は農業と林業部門から発生している。これらの排出量を大幅に削減するには、農業部門への年間投資額を2030年までに2600億ドルに増やす必要がある。これらの投資による潜在的利益は2030年までに4.3兆ドルと推定されており、16対1という実質的な経済的リターンをもたらす。
Almost 20% of greenhouse gas emissions come from the agriculture and forestry sector. To significantly reduce these emissions, annual investments in the agriculture sector need to increase to $260 billion by 2030. The potential benefits from these investments are estimated at $4.3 trillion by 2030, offering a substantial economic return of 16-to-1.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
フードシステムにおける緩和策は、4つのカテゴリーに分けられる。これらは需要側の変化、生態系保護、農場での緩和、および[[:en:supply chains|サプライチェーン]]における緩和である。需要側では、[[:en:food waste|食品廃棄物]]を制限することが食品排出量を削減する効果的な方法である。[[:en:plant-based diets|植物ベースの食事]]など、動物性食品への依存度が低い食事への変更も効果的である。
Mitigation measures in the food system can be divided into four categories. These are demand-side changes, ecosystem protections, mitigation on farms, and mitigation in [[supply chains]]. On the demand side, limiting [[food waste]] is an effective way to reduce food emissions. Changes to a diet less reliant on animal products such as [[plant-based diets]] are also effective.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
世界のメタン排出量の21%を占める牛は、地球温暖化の主要な要因である。熱帯雨林が伐採され、土地が放牧用に転換されると、その影響はさらに大きくなる。ブラジルでは、牛肉1kgの生産により最大335kgのCO<sub>2</sub>換算排出量が生じる可能性がある。
With 21% of global methane emissions, cattle are a major driver of global warming. When rainforests are cut and the land is converted for grazing, the impact is even higher. In Brazil, producing 1&nbsp;kg of beef can result in the emission of up to 335&nbsp;kg CO<sub>2</sub>-eq.
他の家畜、糞尿管理、稲作も、農業における化石燃料燃焼に加えて温室効果ガスを排出する。
Other livestock, manure management and rice cultivation also emit greenhouse gases, in addition to fossil fuel combustion in agriculture.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
家畜からの温室効果ガス排出量を削減するための重要な緩和策には、遺伝子選抜、[[:en:Methanotroph|メタン酸化細菌]]の第一胃への導入、飼料の変更、放牧管理などがある。その他の選択肢としては、[[ruminant/ja|反芻動物]]を含まない代替品、例えば[[milk substitute/ja|植物性ミルク]][[meat analogue/ja|代替肉]]への食事の変更がある。家禽のような非反芻動物の家畜は、はるかに少ない温室効果ガスを排出する。
Important mitigation options for reducing the greenhouse gas emissions from livestock include genetic selection, introduction of [[Methanotroph|methanotrophic bacteria]] into the rumen, diet modification and grazing management. Other options are diet changes towards [[ruminant]]-free alternatives, such as [[milk substitute]]s and [[meat analogue]]s. Non-ruminant livestock, such as poultry, emit far fewer GHGs.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
稲作におけるメタン排出量は、水管理の改善、乾燥種まきと一度の排水の組み合わせ、または[[:en:alternate wetting and drying|間断灌漑]]を実行することによって削減可能である。これにより、湛水と比較して最大90%の排出量削減が可能となり、収量も増加する。
It is possible to cut methane emissions in rice cultivation by improved water management, combining dry seeding and one drawdown, or executing a [[alternate wetting and drying|sequence of wetting and drying]]. This results in emission reductions of up to 90% compared to full flooding and even increased yields.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
[[nutrient management/ja|栄養管理]]を通じて[[Fertilizer/ja#Nitrogen_fertilizers|窒素肥料]]の使用を削減することで、2020年から2050年までに2.77〜11.48ギガトンの二酸化炭素に相当する亜酸化窒素排出量を回避できる可能性がある。
Reducing the usage of [[Fertilizer#Nitrogen_fertilizers|nitrogen fertilizers]] through [[nutrient management]] could avoid nitrous oxide emissions equal to 2.77 - 11.48 gigatons of carbon dioxide from 2020 to 2050.
</div>


=== 産業 ===
=== 産業 ===
Line 352: Line 341:
直接排出と間接排出を含めると、産業は[[温室効果ガス]]の最大の排出源である。[[:en:Electrification|電化]]は産業からの排出量を削減できる。電力が選択肢とならない[[:en:energy-intensive industries|エネルギー多消費産業]]においては、[[:en:Green hydrogen|グリーン水素]]が主要な役割を果たすことができる。さらなる緩和策としては、鉄鋼業やセメント産業がより汚染の少ない生産プロセスに切り替えることが挙げられる。排出原単位を削減するために製品をより少ない材料で作ることができ、産業プロセスをより効率的にすることもできる。最後に、[[:en:circular economy|循環経済]]の措置は新規材料の必要性を減らす。これは、それらの材料の採掘や収集から放出されていたであろう排出量も削減する。
直接排出と間接排出を含めると、産業は[[温室効果ガス]]の最大の排出源である。[[:en:Electrification|電化]]は産業からの排出量を削減できる。電力が選択肢とならない[[:en:energy-intensive industries|エネルギー多消費産業]]においては、[[:en:Green hydrogen|グリーン水素]]が主要な役割を果たすことができる。さらなる緩和策としては、鉄鋼業やセメント産業がより汚染の少ない生産プロセスに切り替えることが挙げられる。排出原単位を削減するために製品をより少ない材料で作ることができ、産業プロセスをより効率的にすることもできる。最後に、[[:en:circular economy|循環経済]]の措置は新規材料の必要性を減らす。これは、それらの材料の採掘や収集から放出されていたであろう排出量も削減する。


<div lang="en" dir="ltr" class="mw-content-ltr">
セメント生産の脱炭素化には新しい技術が必要であり、したがってイノベーションへの投資が必要である。しかし、緩和のための技術はまだ成熟していない。そのため、少なくとも短期的にはCCSが必要となるだろう。
The decarbonisation of cement production requires new technologies, and therefore investment in innovation. But no technology for mitigation is yet mature. So CCS will be necessary at least in the short-term.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
もう一つの大きなカーボンフットプリントを持つセクターは鉄鋼業であり、世界の排出量の約7%を占めている。排出量は、[[:en:electric arc furnaces|電弧炉]]を使用してスクラップ鋼を溶融しリサイクルすることで削減できる。排出なしでバージンスチールを生産するには、[[:en:blast furnace|高炉]]を水素[[:en:direct reduced iron|直接還元鉄]][[:en:electric arc furnace|電弧炉]]に置き換えることができる。あるいは、炭素回収・貯留ソリューションを使用することも可能である。
Another sector with a significant carbon footprint is the steel sector, which is responsible for about 7% of global emissions. Emissions can be reduced by using [[electric arc furnaces]] to melt and recycle scrap steel. To produce virgin steel without emissions, [[blast furnace]]s could be replaced by hydrogen [[direct reduced iron]] and [[electric arc furnace]]s. Alternatively, carbon capture and storage solutions can be used.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
石炭、天然ガス、石油の生産には、しばしば重大なメタン漏洩が伴う。2020年代初頭、一部の政府はこの問題の規模を認識し、規制を導入した。油井やガス井、処理施設における[[:en:Methane leaks|メタン漏洩]]は、ガスを国際的に容易に取引できる国では費用対効果の高い解決策である。イランやトルクメニスタンなどガスが安価な国では漏洩が発生している。そのほとんどは、古い部品の交換や定常的なフレアリングの防止によって止めることができる。[[:en:Coalbed methane|炭層メタン]]は、炭鉱が閉鎖された後でも漏洩し続ける可能性がある。しかし、それは排水や換気システムによって回収することができる。化石燃料企業は、メタン漏洩に対処するための財政的インセンティブを常に持っているわけではない。
Coal, gas and oil production often come with significant methane leakage. In the early 2020s some governments recognised the scale of the problem and introduced regulations. [[Methane leaks]] at oil and gas wells and processing plants are cost-effective to fix in countries which can easily trade gas internationally. There are leaks in countries where gas is cheap; such as Iran, and Turkmenistan. Nearly all this can be stopped by replacing old components and preventing routine flaring. [[Coalbed methane]] may continue leaking even after the mine has been closed. But it can be captured by drainage and/or ventilation systems. Fossil fuel firms do not always have financial incentives to tackle methane leakage.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
<div lang="en" dir="ltr" class="mw-content-ltr">
Line 425: Line 408:
</div>
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
== 負の副作用{{Anchor|Negative side effects}} ==
== Negative side effects ==
緩和策は、負の副作用とリスクを伴うこともある。農業と林業において、緩和策は生物多様性や生態系の機能に影響を与える可能性がある。再生可能エネルギーにおいては、金属や鉱物の採掘が保護地域への脅威を増加させる可能性がある。太陽光パネルや電子廃棄物のリサイクル方法に関する研究も行われている。これにより、材料の供給源が確保され、採掘の必要がなくなるだろう。
Mitigation measures can also have negative side effects and risks. In agriculture and forestry, mitigation measures can affect biodiversity and ecosystem functioning. In renewable energy, mining for metals and minerals can increase threats to conservation areas. There is some research into ways to recycle solar panels and electronic waste. This would create a source for materials so there is no need to mine them.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
学者たちは、緩和策のリスクと負の副作用に関する議論が、行き詰まりや、行動を起こす上での克服不可能な障壁があるという感覚につながる可能性があることを発見した。
Scholars have found that discussions about risks and negative side effects of mitigation measures can lead to deadlock or the feeling that there are insuperable barriers to taking action.
</div>


== 費用と資金 ==
== 費用と資金 ==
{{Main/ja|:en:Economics of climate change mitigation#Assessing costs and benefits|:en:Economic analysis of climate change}}
{{Main/ja|:en:Economics of climate change mitigation#Assessing costs and benefits|:en:Economic analysis of climate change}}


<div lang="en" dir="ltr" class="mw-content-ltr">
気候変動の影響緩和費用は、いくつかの要因によって変動する。一つはベースラインであり、これは代替の緩和シナリオと比較される参照シナリオである。その他には、費用がどのようにモデル化されるか、および将来の政府政策に関する仮定がある。特定の地域における緩和の費用推定は、将来その地域に許容される排出量の量、ならびに介入のタイミングに依存する。
Several factors affect mitigation cost estimates. One is the baseline. This is a reference scenario that the alternative mitigation scenario is compared with. Others are the way costs are modelled, and assumptions about future government policy. Cost estimates for mitigation for specific regions depend on the quantity of emissions allowed for that region in future, as well as the timing of interventions.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
緩和費用は、排出量がどのように、そしていつ削減されるかによって異なる。早期の周到な計画的行動は、費用を最小限に抑えるだろう。世界的に見ると、温暖化を2℃未満に抑えることによる利益は費用を上回るとされており、[[:en:The Economist|エコノミスト]]によれば、それは手頃な費用である。
Mitigation costs will vary according to how and when emissions are cut. Early, well-planned action will minimise the costs. Globally, the benefits of keeping warming under 2&nbsp;°C exceed the costs, which according to [[The Economist]] are affordable.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
経済学者たちは、気候変動緩和の費用をGDPの1%から2%と推定している。これは多額ではあるが、政府が[[苦境にある化石燃料産業]]に提供している補助金よりははるかに少ない。[[:en:International Monetary Fund|国際通貨基金]]はこれを年間5兆ドル以上と推定している。
Economists estimate the cost of climate change mitigation at between 1% and 2% of [[Gross domestic product|GDP]]. While this is a large sum, it is still far less than the subsidies governments provide to the ailing fossil fuel industry. The [[International Monetary Fund]] estimated this at more than $5 trillion per year.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
別の推定では、気候変動緩和と適応のための資金フローは年間8000億ドル以上になるだろうと述べている。これらの財政的要件は、2030年までに年間4兆ドルを超えると予測されている。
Another estimate says that financial flows for climate mitigation and adaptation are going to be over $800 billion per year. These financial requirements are predicted to exceed $4 trillion per year by 2030.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
世界的に見て、温暖化を2℃に制限することは、経済的費用よりも高い経済的利益をもたらす可能性がある。緩和の経済的影響は、政策設計と[[:en:international cooperation|国際協力]]のレベルに応じて、地域や家計間で大きく異なる。世界的な協力の遅れは、地域全体、特に現在比較的炭素集約度が高い地域において、政策コストを増加る。統一的な炭素価値を持つ経路は、より炭素集約的な地域、化石燃料輸出国、および貧しい地域でより高い緩和費用を示す。GDPや金銭的用語で表現された集計的な定量化は、貧しい国の家計への経済的影響を過小評価している。福利と幸福に対する実際の影響は、比較的に大きい。
Globally, limiting warming to 2&nbsp;°C may result in higher economic benefits than economic costs. The economic repercussions of mitigation vary widely across regions and households, depending on policy design and level of [[international cooperation]]. Delayed global cooperation increases policy costs across regions, especially in those that are relatively carbon intensive at present. Pathways with uniform carbon values show higher mitigation costs in more carbon-intensive regions, in fossil-fuels exporting regions and in poorer regions. Aggregate quantifications expressed in GDP or monetary terms undervalue the economic effects on households in poorer countries. The actual effects on welfare and well-being are comparatively larger.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:Cost–benefit analysis|費用便益分析]]は、気候変動緩和全体を分析するには不適切かもしれない。しかし、1.5℃目標と2℃目標の違いを分析するには依然として有用である。排出量を削減するコストを推定する方法の一つは、潜在的な技術的および生産の変化の可能性のあるコストを考慮することである。政策立案者は、様々な方法の[[:en:marginal abatement costs|限界削減費用]]を比較して、時間の経過に伴う可能な削減のコストと量を評価できる。様々な措置の限界削減費用は、国、セクター、および時間によって異なる。
[[Cost–benefit analysis]] may be unsuitable for analysing climate change mitigation as a whole. But it is still useful for analysing the difference between a 1.5&nbsp;°C target and 2&nbsp;°C. One way of estimating the cost of reducing emissions is by considering the likely costs of potential technological and output changes. Policymakers can compare the [[marginal abatement costs]] of different methods to assess the cost and amount of possible abatement over time. The marginal abatement costs of the various measures will differ by country, by sector, and over time.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
輸入のみに対する[[:en:Eco-tariff|エコ関税]]は、世界的な輸出の[[:en:Competition (economics)|競争力]]の低下と[[:en:deindustrialisation|脱工業化]]に貢献する。
[[Eco-tariff]]s on only imports contribute to reduced global export [[Competition (economics)|competitiveness]] and to [[deindustrialisation]].
</div>


=== 気候変動の影響によるコストの回避 ===
=== 気候変動の影響によるコストの回避 ===