Created page with "燃焼による副産物以外にも、環境への影響は及ぶ。海上での石油流出は海洋生物に害を与え、有毒な排出物を放出する火災を引き起こす可能性がある。世界の水使用量の約10%はエネルギー生産、主に火力発電所での冷却に費やされている。乾燥地域では、これは水不足の一因となっている。バイオエネルギー生産、石炭採..."
[[File:People-without-electricity-country-2016.svg|thumb|upright=1.35|alt=Map of people with access to energy. Lack of access is most pronounced in India, Sub-Saharan Africa and South-East Asia.|World map showing where people without access to electricity lived in 2016—mainly in [[sub-Saharan Africa]] and the [[Indian subcontinent]]]]
Meeting existing and future energy demands in a sustainable way is a critical challenge for the global goal of limiting climate change while maintaining economic growth and enabling living standards to rise. Reliable and affordable energy, particularly electricity, is essential for health care, education, and economic development. As of 2020, 790 million people in developing countries do not have access to electricity, and around 2.6 billion rely on burning polluting fuels for cooking.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:Least developed countries|後発開発途上国]]におけるエネルギーアクセスの改善と、エネルギーのクリーン化は、[[:en:Sustainable Development Goal 14|気候変動対策]]から[[:en:Sustainable Development Goal 5|ジェンダー平等]]まで多岐にわたる[[:en:Sustainable Development Goals|国連の2030年持続可能な開発目標]]のほとんどを達成するための鍵となる。[[:en:Sustainable Development Goal 7|持続可能な開発目標7]]は、「すべての人々に手ごろで信頼でき、持続可能かつ近代的なエネルギーへのアクセス」を求めており、これには2030年までの普遍的な[[:en:access to electricity|電力へのアクセス]]と[[:en:Clean cooking|クリーンな調理設備]]へのアクセスが含まれている。
Improving energy access in the [[Least developed countries|least-developed countries]] and making energy cleaner are key to achieving most of the United Nations 2030 [[Sustainable Development Goals]], which cover issues ranging from [[Sustainable Development Goal 14|climate action]] to [[Sustainable Development Goal 5|gender equality]]. [[Sustainable Development Goal 7]] calls for "access to affordable, reliable, sustainable and modern energy for all", including universal [[access to electricity]] and to [[Clean cooking|clean cooking facilities]] by 2030.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
==省エネルギー{{Anchor|Energy conservation}}==
==Energy conservation==
{{Main/ja|:en:Energy conservation|:en:Efficient energy use}}
{{Main|Energy conservation|Efficient energy use}}
[[File:Energy use per person 2019 - OWID.svg|thumb|upright=1.35|alt=米国やカナダのような国は、日本や西ヨーロッパの2倍、一部のアフリカの[[:en:Least developed countries|後発開発途上国]]の商業エネルギーの100倍を一人当たり使用している。|[[:en:World energy consumption|世界のエネルギー使用量]]は非常に不公平である。米国やカナダのような高所得国は、アフリカの[[:en:least developed countries|一部の後発開発途上国]]の100倍も一人当たりのエネルギーを使用している。]]
[[File:Energy use per person 2019 - OWID.svg|thumb|upright=1.35|alt=Countries such as the US and Canada use twice as much energy per capita as Japan or western Europe, and 100 times as much commercial energy per capita as some African countries.|[[World energy consumption|Global energy usage]] is highly unequal. High income countries such as the United States and Canada use 100 times as much energy per capita as some of the [[least developed countries]] in Africa.]]
エネルギー効率、つまり同じ財やサービスを提供するためにより少ないエネルギーを使用すること、あるいはより少ない財で同等のサービスを提供することは、多くの持続可能なエネルギー戦略の要石です。[[:en:International Energy Agency|国際エネルギー機関]](IEA)は、エネルギー効率を高めることで、パリ協定の目標達成に必要な温室効果ガス排出量削減の40%を達成できると推定している。
Energy efficiency—using less energy to deliver the same goods or services, or delivering comparable services with less goods—is a cornerstone of many sustainable energy strategies. The [[International Energy Agency]] (IEA) has estimated that increasing energy efficiency could achieve 40% of greenhouse gas emission reductions needed to fulfil the Paris Agreement's goals.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
エネルギーは、家電製品、車両、産業プロセス、建物の技術効率を高めることで節約できる。もう一つのアプローチは、より良い建築設計やリサイクルなどを通じて、生産に多くのエネルギーを必要とする材料の使用を減らすことである。出張で飛行機を利用する代わりに[[:en:videoconferencing|ビデオ会議]]を利用したり、都市内の移動を車ではなく自転車、徒歩、公共交通機関にすることで、エネルギーを節約することも可能である。政府の効率改善政策には、[[:en:building codes|建築基準]]、[[:en:Minimum energy performance standard|性能基準]]、[[:en:Carbon price|炭素価格制度]]、そして[[:en:modal shift|交通手段の変化]]を促すエネルギー効率の良い[[:en:infrastructure|インフラ]]の開発などが含まれる。
Energy can be conserved by increasing the technical efficiency of appliances, vehicles, industrial processes, and buildings. Another approach is to use fewer materials whose production requires a lot of energy, for example through better building design and recycling. Behavioural changes such as using [[videoconferencing]] rather than business flights, or making urban trips by cycling, walking or public transport rather than by car, are another way to conserve energy. Government policies to improve efficiency can include [[building codes]], [[Minimum energy performance standard|performance standards]], [[Carbon price|carbon pricing]], and the development of energy-efficient infrastructure to encourage [[modal shift|changes in transport modes]].
The [[energy intensity]] of the global economy (the amount of energy consumed per unit of [[gross domestic product]] (GDP)) is a rough indicator of the energy efficiency of economic production. In 2010, global energy intensity was 5.6 megajoules (1.6 [[Kilowatt-hour|kWh]]) per US dollar of GDP. United Nations goals call for energy intensity to decrease by 2.6% each year between 2010 and 2030. In recent years this target has not been met. For instance, between 2017 and 2018, energy intensity decreased by only 1.1%.
Efficiency improvements often lead to a [[Jevons paradox|rebound effect]] in which consumers use the money they save to buy more energy-intensive goods and services. For example, recent technical efficiency improvements in transport and buildings have been largely offset by trends in [[consumer behaviour]], such as [[Autobesity|selecting larger vehicles]] and homes.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
= 持続可能なエネルギー源{{Anchor|Sustainable energy sources}} ==
==Sustainable energy sources==
=== 再生可能エネルギー源 ===
===Renewable energy sources===
{{Main/ja|:en:Renewable energy}}
{{Main|Renewable energy}}
{{Imageright|
{{Imageright|
{{ multiple image | align = right | total_width =450
{{ multiple image | align = right | total_width =450
| image1= 2010- Fossil fuels vs Wind + Solar - electricity generation.svg |caption1=In 2023, electricity generation from wind and solar sources was projected to exceed 30% by 2030.
| image1= 2010- Fossil fuels vs Wind + Solar - electricity generation.svg |caption1=2023年には、風力と太陽光からの発電量が2030年までに30%を超える見込みである。
| image2=2011- Renewable energy capacity - International Energy Agency.svg| |alt=Graph showing the expansion of wind and solar renewable energy capacity from 2011 to 2020 |caption2=Renewable energy capacity has steadily grown, led by [[Photovoltaic system|solar photovoltaic]] power.
| image2=2011- Renewable energy capacity - International Energy Agency.svg| |alt=2011年から2020年までの風力と太陽光の再生可能エネルギー容量の拡大を示すグラフ|caption2=[[:en:Photovoltaic system|太陽光発電]]を中心に、再生可能エネルギー容量は着実に増加している。
}}}}
}}}}
[[File:2015- Investment in clean energy - IEA.svg |thumb |Clean energy investment has benefited from post-pandemic economic recovery, a global energy crisis involving high fossil fuel prices, and growing policy support across various nations. By 2025, investment in the energy transition had grown to about twice that for [[fossil fuel]]s (oil, natural gas and coal).]]
[[File:2015- Investment in clean energy - IEA.svg |thumb |クリーンエネルギー投資は、パンデミック後の経済回復、化石燃料価格の高騰を伴う世界的なエネルギー危機、そして各国の政策支援の拡大から恩恵を受けている。2025年までに、エネルギー転換への投資は[[:en:fossil fuel|化石燃料]](石油、天然ガス、石炭)への投資の約2倍に増加した。]]
Renewable energy sources are essential to sustainable energy, as they generally strengthen energy security and emit far fewer greenhouse gases than fossil fuels. Renewable energy projects sometimes raise significant sustainability concerns, such as risks to biodiversity when areas of high ecological value are converted to bioenergy production or wind or solar farms.
[[Hydropower]] is the largest source of renewable electricity while solar and wind energy are growing rapidly. [[Photovoltaic system|Photovoltaic solar]] and [[Wind power|onshore wind]] are the cheapest forms of new power generation capacity in most countries. For more than half of the 770 million people who currently lack access to electricity, [[Distributed generation|decentralised renewable energy]] such as solar-powered mini-grids is likely the cheapest method of providing it by 2030. United Nations targets for 2030 include substantially increasing the proportion of renewable energy in the world's energy supply.
According to the International Energy Agency, renewable energy sources like wind and solar power are now a commonplace source of electricity, making up 70% of all new investments made in the world's power generation. The Agency expects renewables to become the primary energy source for electricity generation globally in the next three years, overtaking coal.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
==== 太陽光 ====
====Solar====
[[File:Renewable Energy Development in the California Desert 006.jpg|thumb|[[:en:California|カリフォルニア州]]にある[[:en:photovoltaic power station|太陽光発電所]]|alt=明るい日差しの中で、人の高さで約45度に傾斜した黒いパネルが長く連なり、遠くまで伸びている]]
[[File:Renewable Energy Development in the California Desert 006.jpg|thumb|A [[photovoltaic power station]] in [[California]], United States|alt=long rows of dark panels, sloped about 45 degrees at the height of a person, stretch into the distance in bright sunshine]]
{{main/ja|:en:Solar power|:en:Solar water heating}}
{{main|Solar power|Solar water heating}}
太陽は地球の主要なエネルギー源であり、多くの地域でクリーンで豊富に入手可能な資源である。2019年には、太陽光発電は主に[[:en:solar panels|太陽光パネル]]([[:en:photovoltaic cells|太陽電池]]を基盤とする)を通じて世界の電力の約3%を供給した。太陽光発電は、2027年までに世界最大の設備容量を持つ電力源になると予想されている。これらのパネルは建物の屋根に設置されるか、大規模な[[:en:photovoltaic power station|太陽光発電所]]に設置される。太陽電池のコストは急速に低下しており、世界中の設備容量の力強い成長を牽引している。新しい太陽光発電所からの[[:en:Cost of electricity by source|電力コスト]]は、既存の石炭火力発電所からの電力と競争力があり、多くの場所ではそれよりも安価である。将来のエネルギー使用に関する様々な予測では、太陽光発電が持続可能なエネルギー構成における主要な発電源の一つとして挙げられている。
The Sun is Earth's primary source of energy, a clean and abundantly available resource in many regions. In 2019, solar power provided around 3% of global electricity, mostly through [[solar panels]] based on [[photovoltaic cells]] (PV). Solar PV is expected to be the electricity source with the largest installed capacity worldwide by 2027. The panels are mounted on top of buildings or installed in utility-scale [[photovoltaic power station|solar parks]]. Costs of solar photovoltaic cells have dropped rapidly, driving strong growth in worldwide capacity. The [[Cost of electricity by source|cost of electricity]] from new solar farms is competitive with, or in many places, cheaper than electricity from existing coal plants. Various projections of future energy use identify solar PV as one of the main sources of energy generation in a sustainable mix.
Most components of solar panels can be easily recycled, but this is not always done in the absence of regulation. Panels typically contain [[heavy metals]], so they pose environmental risks if put in [[landfill]]s. It takes fewer than two years for a solar panel to produce as much energy as was used for its production. Less energy is needed if materials are recycled rather than mined.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:concentrated solar power|集光型太陽熱発電]]では、鏡の集光によって太陽光線を集中させ、流体を加熱する。結果として生じる蒸気から、[[:en:heat engine|熱機関]]を使って電力が生成される。集光型太陽熱発電は、熱の一部を貯蔵して必要な時に電力を生成できるようにすることで、[[:en:Dispatchable generation|ディスパッチ可能な発電]]をサポートできる。電力生産に加えて、太陽エネルギーはより直接的に利用されており、[[:en:Solar thermal energy|太陽熱暖房]]システムは給湯、建物の暖房、乾燥、淡水化に利用されている。
In [[concentrated solar power]], solar rays are concentrated by a field of mirrors, heating a fluid. Electricity is produced from the resulting steam with a [[heat engine]]. Concentrated solar power can support [[Dispatchable generation|dispatchable power generation]], as some of the heat is typically stored to enable electricity to be generated when needed. In addition to electricity production, solar energy is used more directly; [[Solar thermal energy|solar thermal heating]] systems are used for hot water production, heating buildings, drying, and desalination.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====風力発電====
====Wind power====
{{main/ja|:en:Wind power|:en:Environmental impact of wind power}}
{{main|Wind power|Environmental impact of wind power}}
Wind has been an important driver of development over millennia, providing mechanical energy for industrial processes, water pumps, and sailing ships. Modern wind turbines are used to generate electricity and provided approximately 6% of global electricity in 2019. Electricity from onshore [[wind farms]] is often cheaper than existing coal plants and competitive with natural gas and nuclear. Wind turbines can also be placed offshore, where winds are steadier and stronger than on land but construction and maintenance costs are higher.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
陸上風力発電所は、しばしば自然豊かな地域や農村部に建設されるため、景観に視覚的な影響を与える。風力タービンとの衝突により[[bat/ja|コウモリ]]や、程度は低いものの鳥が死亡することもあるが、これらの影響は窓や[[:en:Overhead power line|送電線]]といった他のインフラによるものよりも小さい。タービンから発生する騒音やちらつきのある光は不快感を引き起こし、人口密集地近くでの建設を制限する可能性がある。原子力発電所や化石燃料発電所とは対照的に、風力発電は水を消費しない。風力発電所自体が生み出すエネルギーと比較して、風力タービンの建設に必要なエネルギーは少ない。
Onshore wind farms, often built in wild or rural areas, have a visual impact on the landscape. While collisions with wind turbines kill both [[bat]]s and to a lesser extent birds, these impacts are lower than from other infrastructure such as windows and [[Overhead power line|transmission lines]]. The noise and flickering light created by the turbines can cause annoyance and constrain construction near densely populated areas. Wind power, in contrast to nuclear and fossil fuel plants, does not consume water. Little energy is needed for wind turbine construction compared to the energy produced by the wind power plant itself.
[[File:Central Hidroeléctrica Simón Bolívar Represa de Guri Гідроелектростанція Симона Болівара - гребля Гурі 29.jpg|thumb|alt=a river flows smoothly from rectangular openings at the base of a high sloping concrete wall, with electricity wires above the river|[[Guri Dam]], a hydroelectric dam in [[Venezuela]]]]
[[Hydroelectricity|Hydroelectric plants]] convert the energy of moving water into electricity. In 2020, hydropower supplied 17% of the world's electricity, down from a high of nearly 20% in the mid-to-late 20th century.
In conventional hydropower, a reservoir is created behind a dam. Conventional hydropower plants provide a highly flexible, [[Dispatchable generation|dispatchable]] electricity supply. They can be combined with wind and solar power to meet peaks in demand and to compensate when wind and sun are less available.
Compared to reservoir-based facilities, [[run-of-the-river hydroelectricity]] generally has less environmental impact. However, its ability to generate power depends on river flow, which can vary with daily and seasonal weather. Reservoirs provide water quantity controls that are used for flood control and flexible electricity output while also providing security during drought for drinking water supply and irrigation.
Hydropower ranks among the energy sources with the lowest levels of greenhouse gas emissions per unit of energy produced, but levels of emissions vary enormously between projects. The highest emissions tend to occur with large dams in tropical regions. These emissions are produced when the biological matter that becomes submerged in the reservoir's flooding decomposes and releases carbon dioxide and methane. [[Deforestation]] and climate change can reduce energy generation from hydroelectric dams. Depending on location, large dams can displace residents and cause significant local environmental damage; potential [[dam failure]] could place the surrounding population at risk.
[[:en:Geothermal energy|地熱エネルギー]]は、地下深部の熱を利用して発電したり、水や建物を温めたりすることで生成される。地熱エネルギーの利用は、高い温度、熱流量、そして[[:en:Permeability (Earth sciences)|透過性]](流体が岩石を通過できる能力)の組み合わせが必要な、熱抽出が経済的に可能な地域に集中している。地下の貯水池で生成された蒸気から電力が作られる。2020年、地熱エネルギーは[[:en:global energy consumption|世界のエネルギー消費量]]の1%未満を供給した。
[[File:Larderello Cooling Towers.jpg|thumb|Cooling towers at a geothermal power plant in [[Larderello]], Italy|alt=3 enormous waisted vertical concrete cylinders, one emitting a wisp of steam, dwarf a building in the foreground]]
[[Geothermal energy]] is produced by tapping into deep underground heat and harnessing it to generate electricity or to heat water and buildings. The use of geothermal energy is concentrated in regions where heat extraction is economical: a combination is needed of high temperatures, heat flow, and [[Permeability (Earth sciences)|permeability]] (the ability of the rock to allow fluids to pass through). Power is produced from the steam created in underground reservoirs. Geothermal energy provided less than 1% of [[global energy consumption]] in 2020.
Geothermal energy is a renewable resource because thermal energy is constantly replenished from neighbouring hotter regions and the [[radioactive decay]] of [[Naturally occurring radioactive material|naturally occurring isotopes]]. On average, the greenhouse gas emissions of geothermal-based electricity are less than 5% that of coal-based electricity. Geothermal energy carries a risk of inducing earthquakes, needs effective protection to avoid water pollution, and releases toxic emissions which can be captured.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====バイオエネルギー====
====Bioenergy====
{{Main/ja|:en:Bioenergy}}
{{Main|Bioenergy}}
{{Further/ja|:en:Sustainable biofuel}}
{{Further|Sustainable biofuel}}
[[File:Kenyan farmer with a biogas lamp provided by USAID 2013.jpg|thumb|upright|alt=天井から吊るされたランプに火をつける男性|ケニアの酪農家がバイオガスランプに火をつける。[[:en:Biogas|バイオガス]]は[[:en:biomass|バイオマス]]から生成される再生可能エネルギー源で、調理や照明に燃やすことができる。]]
[[File:Kenyan farmer with a biogas lamp provided by USAID 2013.jpg|thumb|upright|alt=Man lighting a lamp hung from the ceiling|Kenyan dairy farmer lighting a biogas lamp. [[Biogas]] produced from [[biomass]] is a renewable energy source that can be burned for cooking or light.]]
[[File:Faz S Sofia canavial 090607 REFON.JPG|thumb|right|alt=高さ1メートルほどの草のような緑の畑が広がり、周囲は森林で、遠くの地平線には都市の建物が見える|ブラジルの[[:en:Sustainable biofuel#Sugarcane in Brazil|サトウキビ農園]]。[[:en:Ethanol fuel|エタノール燃料]]を生産する。]]
[[File:Faz S Sofia canavial 090607 REFON.JPG|thumb|right|alt=A green field of plants looking like metre high grass, surrounded by woodland with urban buildings on the far horizon|A [[Sustainable biofuel#Sugarcane in Brazil|sugarcane plantation]] to produce [[Ethanol fuel|ethanol]] in Brazil]]
Biomass is renewable organic material that comes from plants and animals. It can either be burned to produce heat and electricity or be converted into [[biofuels]] such as [[biodiesel]] and ethanol, which can be used to power vehicles.
The climate impact of bioenergy varies considerably depending on where biomass feedstocks come from and how they are grown. For example, burning wood for energy releases carbon dioxide; those emissions can be significantly offset if the trees that were harvested are replaced by new trees in a well-managed forest, as the new trees will absorb carbon dioxide from the air as they grow. However, the establishment and cultivation of bioenergy crops can [[Land use, land-use change, and forestry|displace natural ecosystems]], [[soil retrogression and degradation|degrade soils]], and consume water resources and synthetic fertilisers.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
バイオエネルギーの気候への影響は、バイオマスの原料がどこから来て、どのように栽培されるかによって大きく異なる。例えば、エネルギーのために木材を燃やすと二酸化炭素が放出されるが、伐採された木が適切に管理された森林で新しい木に置き換えられれば、新しい木が成長するにつれて空気中の二酸化炭素を吸収するため、これらの排出は大幅に相殺されうる。しかし、バイオエネルギー作物の確立と栽培は、[[:en:Land use, land-use change, and forestry|自然の生態系を変位]]させ、[[:en:soil retrogression and degradation|土壌を劣化]]させ、水資源や合成肥料を消費する可能性がある。
Approximately one-third of all wood used for traditional heating and cooking in tropical areas is harvested unsustainably. Bioenergy feedstocks typically require significant amounts of energy to harvest, dry, and transport; the energy usage for these processes may emit greenhouse gases. In some cases, the impacts of [[Indirect land use change impacts of biofuels|land-use change]], cultivation, and processing can result in higher overall carbon emissions for bioenergy compared to using fossil fuels.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
熱帯地域で伝統的な暖房や調理に使われる木材の約3分の1は、持続不可能な方法で伐採されている。バイオエネルギーの原料は通常、収穫、乾燥、輸送にかなりの量のエネルギーを必要とし、これらのプロセスでのエネルギー使用は温室効果ガスを排出する可能性がある。場合によっては、[[:en:Indirect land use change impacts of biofuels|土地利用の変化]]、栽培、加工の影響により、バイオエネルギーの方が化石燃料を使用するよりも全体の炭素排出量が多くなることがある。
Use of farmland for growing biomass can result in [[food vs. fuel|less land being available for growing food]]. In the United States, around 10% of motor gasoline has been replaced by [[Corn ethanol|corn-based ethanol]], which requires a significant proportion of the harvest. In Malaysia and Indonesia, clearing forests to produce [[palm oil]] for biodiesel has led to [[Social and environmental impact of palm oil|serious social and environmental effects]], as these forests are critical [[carbon sinks]] and [[habitat]]s for diverse species. Since [[photosynthesis]] captures only a small fraction of the energy in sunlight, producing a given amount of bioenergy requires a large amount of land compared to other renewable energy sources.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
バイオマス栽培のために農地を使用すると、[[:en:food vs. fuel|食料生産に利用できる土地が減少する]]可能性がある。米国では、自動車用ガソリンの約10%が[[:en:Corn ethanol|トウモロコシ由来のエタノール]]に置き換えられているが、これはかなりの収穫量を必要とする。マレーシアとインドネシアでは、バイオディーゼル用の[[palm oil/ja|パーム油]]を生産するために森林を伐採した結果、[[:en:Social and environmental impact of palm oil|深刻な社会的および環境的影響]]が生じている。これらの森林は重要な[[:en:carbon sinks|炭素吸収源]]であり、多様な種の[[:en:habitat|生息地]]であるためだ。[[:en:photosynthesis|光合成]]は太陽光のエネルギーのごく一部しか捕捉しないため、一定量のバイオエネルギーを生産するには、他の再生可能エネルギー源と比較して大量の土地が必要となる。
[[Second-generation biofuels]] which are produced from non-food plants or waste reduce competition with food production, but may have other negative effects including trade-offs with conservation areas and local air pollution. Relatively sustainable sources of biomass include [[Algae fuel|algae]], waste, and crops grown on soil unsuitable for food production.
[[Carbon capture and storage]] technology can be used to capture emissions from bioenergy power plants. This process is known as [[bioenergy with carbon capture and storage]] (BECCS) and can result in net [[carbon dioxide removal]] from the atmosphere. However, BECCS can also result in net positive emissions depending on how the biomass material is grown, harvested, and transported. Deployment of BECCS at scales described in some climate change mitigation pathways would require converting large amounts of cropland.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:Carbon capture and storage|炭素回収・貯留]]技術は、バイオエネルギー発電所からの排出を回収するために使用できる。このプロセスは[[:en:bioenergy with carbon capture and storage|バイオエネルギー炭素回収・貯留]](BECCS)として知られ、大気からの正味の[[:en:carbon dioxide removal|二酸化炭素除去]]をもたらす可能性がある。しかし、BECCSもまた、バイオマス材料の栽培、収穫、輸送方法によっては、正味でプラスの排出量となる可能性がある。一部の気候変動緩和経路で記述されている規模でのBECCSの展開には、大量の農地転換が必要となるだろう。
====Marine energy====
{{Main|Marine energy}}
Marine energy has the smallest share of the energy market. It includes [[Ocean Thermal Energy Conversion|OTEC]], [[tidal power]], which is approaching maturity, and [[wave power]], which is earlier in its development. Two tidal barrage systems in France and in South Korea make up 90% of global production. While single marine energy devices pose little risk to the environment, the impacts of larger devices are less well known.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====海洋エネルギー====
===Non-renewable energy sources===
{{Main/ja|:en:Marine energy}}
====Fossil fuel switching and mitigation====
海洋エネルギーは、エネルギー市場において最も小さいシェアを占めている。これには、[[:en:Ocean Thermal Energy Conversion|海洋温度差発電(OTEC)]]、実用化が進む[[:en:tidal power|潮力発電]]、そして開発の初期段階にある[[wave power|波力発電]]が含まれる。フランスと韓国にある2つの潮汐堰システムが、世界の生産量の90%を占める。単一の海洋エネルギー装置が環境に与えるリスクは小さいものの、より大型の装置が与える影響については、まだ十分に解明されていない。
Switching from [[coal]] to [[natural gas]] has advantages in terms of sustainability. For a given unit of energy produced, the [[Life-cycle greenhouse gas emissions of energy sources|life-cycle greenhouse-gas emissions]] of natural gas are around 40 times the emissions of wind or nuclear energy but are much less than coal. Burning natural gas produces around half the emissions of coal when used to generate electricity and around two-thirds the emissions of coal when used to produce heat. Natural gas combustion also produces less air pollution than coal. However, natural gas is a potent greenhouse gas in itself, and [[Fugitive gas emissions|leaks during extraction and transportation]] can negate the advantages of switching away from coal. The technology to curb [[methane leaks]] is widely available but it is not always used.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
=== 非再生可能エネルギー源 ===
Switching from coal to natural gas reduces emissions in the short term and thus contributes to [[climate change mitigation]]. However, in the long term it does not provide a path to [[net-zero emissions]]. Developing natural gas infrastructure risks [[carbon lock-in]] and [[stranded assets]], where new fossil infrastructure either commits to decades of carbon emissions, or has to be written off before it makes a profit.
==== 化石燃料の転換と緩和策 ====
</div>
[[coal/ja|石炭]]から[[natural gas/ja|天然ガス]]への転換は、持続可能性の観点から利点がある。生産されるエネルギー単位あたりで比較すると、天然ガスの[[:en:Life-cycle greenhouse gas emissions of energy sources|ライフサイクル温室効果ガス排出量]]は風力や原子力の約40倍だが、石炭よりははるかに少ない。発電に利用する場合、天然ガスの燃焼による排出量は石炭の約半分であり、熱生産に利用する場合は石炭の約3分の2となる。また、天然ガスの燃焼は石炭よりも大気汚染物質の排出が少ない。しかし、天然ガス自体が強力な温室効果ガスであり、[[:en:Fugitive gas emissions|採掘や輸送中の漏出]]は、石炭からの転換による利点を帳消しにしてしまう可能性がある。[[:en:methane leaks|メタン漏出]]を抑制する技術は広く利用可能だが、常に使用されているわけではない。
The greenhouse gas emissions of fossil fuel and biomass power plants can be significantly reduced through carbon capture and storage (CCS). Most studies use a working assumption that CCS can capture 85–90% of the [[carbon dioxide]] ({{CO2}}) emissions from a power plant. Even if 90% of emitted {{CO2}} is captured from a coal-fired power plant, its uncaptured emissions are still many times greater than the emissions of nuclear, solar or wind energy per unit of electricity produced.
Since coal plants using CCS are less efficient, they require more coal and thus increase the pollution associated with mining and transporting coal. CCS is one of the most expensive ways of reducing emissions in the energy sector. Deployment of this technology is very limited. As of 2024, CCS is used in only 5 power plants and in 39 other facilities.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
化石燃料およびバイオマス発電所の温室効果ガス排出量は、[[:en:Carbon capture and storage|炭素回収・貯留(CCS)]]によって大幅に削減できる。ほとんどの研究では、CCSが発電所からの[[carbon dioxide/ja|二酸化炭素]](CO2)排出量の85〜90%を回収できるという前提に基づいている。たとえ石炭火力発電所から排出されるCO2の90%が回収されたとしても、回収されなかった排出量は、原子力、太陽光、風力エネルギーが生産する電力単位あたりの排出量よりもはるかに多い。
[[File:Electricity production from fossil fuels, nuclear, and renewables, World, OWID chart.svg|thumb|upright=1.35|alt=Chart showing the proportion of electricity produced by fossil fuels, nuclear, and renewables from 1985 to 2020|Since 1985, the proportion of electricity generated from low-carbon sources has increased only slightly. Advances in deploying renewables have been mostly offset by declining shares of nuclear power.]]
[[Nuclear power]] has been used since the 1950s as a low-carbon source of [[Base load|baseload]] electricity. Nuclear power plants in over 30 countries generate about 10% of global electricity. As of 2019, nuclear generated over a quarter of all [[low-carbon power|low-carbon energy]], making it the second largest source after hydropower.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====原子力発電====
Nuclear power's lifecycle greenhouse gas emissions—including the mining and processing of [[uranium]]—are similar to the emissions from renewable energy sources. Nuclear power uses little [[Surface power density|land per unit of energy]] produced, compared to the major renewables. Additionally, Nuclear power does not create local air pollution. Although the [[uranium ore]] used to fuel nuclear fission plants is a non-renewable resource, enough exists to provide a supply for hundreds to thousands of years. However, uranium resources that can be accessed in an economically feasible manner, at the present state, are limited and uranium production could hardly keep up during the expansion phase. Climate change mitigation pathways consistent with ambitious goals typically see an increase in power supply from nuclear.
{{Main/ja|:en:Nuclear power debate|:en:Nuclear renaissance}}
</div>
[[File:Electricity production from fossil fuels, nuclear, and renewables, World, OWID chart.svg|thumb|upright=1.35|alt=1985年から2020年までの化石燃料、原子力、再生可能エネルギーによる電力生産の割合を示すグラフ|1985年以降、低炭素源からの発電量の割合はわずかにしか増加していない。再生可能エネルギー導入の進展は、原子力のシェア低下によってほとんど相殺されている。]]
原子力のライフサイクル温室効果ガス排出量([[uranium/ja|ウラン]]の採掘・加工を含む)は、再生可能エネルギー源からの排出量と同程度である。原子力は、主要な再生可能エネルギーと比較して、生産されるエネルギー単位あたりの[[:en:Surface power density|土地使用量]]が少ない。さらに、原子力は局所的な大気汚染を引き起こさない。核分裂発電所の燃料となる[[:en:uranium ore|ウラン鉱石]]は非再生可能資源であるが、数百年から数千年分の供給を賄える量が存在する。しかし、現在の技術では経済的に採掘可能なウラン資源は限られており、拡大期にはウラン生産が追いつかない可能性がある。意欲的な目標に合致する気候変動緩和経路では、通常、原子力による電力供給の増加が見込まれている。
There is controversy over whether nuclear power is sustainable, in part due to concerns around [[nuclear waste]], [[nuclear proliferation|nuclear weapon proliferation]], and [[Nuclear accident|accidents]]. Radioactive nuclear waste must be managed for thousands of years. For each unit of energy produced, nuclear energy has caused far fewer [[Nuclear and radiation accidents and incidents|accidental]] and pollution-related deaths than fossil fuels, and the historic fatality rate of nuclear is comparable to renewable sources. [[Public opinion on nuclear issues|Public opposition to nuclear energy]] often makes nuclear plants politically difficult to implement.
Reducing the time and the cost of building new nuclear plants have been goals for decades but [[Economics of nuclear power plants|costs remain high]] and timescales long. Various new forms of nuclear energy are in development, hoping to address the drawbacks of conventional plants. [[Fast breeder]] reactors are capable of [[Nuclear reprocessing|recycling nuclear waste]] and therefore can significantly reduce the amount of waste that requires [[Deep geological repository|geological disposal]], but have not yet been deployed on a large-scale commercial basis. [[Thorium-based nuclear power|Nuclear power based on thorium]] (rather than uranium) may be able to provide higher energy security for countries that do not have a large supply of uranium. [[Small modular reactors]] may have several advantages over current large reactors: It should be possible to build them faster and their modularization would allow for cost reductions via [[learning-by-doing]]. They are also considered safer to use than traditional power plants.
しかし、生産されるエネルギー単位あたりで比較すると、原子力発電が原因となる[[:en:Nuclear and radiation accidents and incidents|事故]]や汚染関連の死亡者数は、化石燃料よりもはるかに少ない。また、原子力の過去の死亡率は再生可能エネルギー源と同程度である。[[:en:Public opinion on nuclear issues|原子力エネルギーに対する世論の反対]]は、原子力発電所の導入を政治的に困難にすることがしばしばある。
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
新規原子力発電所の建設期間とコスト削減は長年の目標となっているが、[[:en:Economics of nuclear power plants|コストは依然として高く]]、期間も長期にわたる。在来型プラントの欠点を克服するため、様々な新しい形態の原子力エネルギーが開発中である。[[:en:Fast breeder|高速増殖炉]]は[[:en:Nuclear reprocessing|核廃棄物の再処理]]が可能であり、[[:en:Deep geological repository|地層処分]]が必要な廃棄物の量を大幅に削減できるが、大規模な商業ベースでの導入には至っていない。[[:en:Thorium-based nuclear power|トリウム]](ウランではなく)をベースとする原子力発電は、ウラン供給が少ない国々にとってエネルギー安全保障を高める可能性がある。[[:en:Small modular reactors|小型モジュール炉]]は、現在の大型炉に比べていくつかの利点を持つとされる。より迅速な建設が可能であり、モジュール化により[[:en:learning-by-doing|経験曲線効果]]によるコスト削減が見込まれる。また、従来の発電所よりも安全性が高いと考えられている。
Several countries are attempting to develop [[Fusion power|nuclear fusion]] reactors, which would generate small amounts of waste and no risk of explosions. Although fusion power has taken steps forward in the lab, the multi-decade timescale needed to bring it to commercialization and then scale means it will not contribute to a 2050 net zero goal for climate change mitigation.
[[File:2015- Investment in clean energy - IEA.svg |thumb |By 2025, investment in the energy transition had grown to about twice that for [[fossil fuel]]s (oil, natural gas and coal).]]
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
== エネルギーシステムの変革{{Anchor|Energy system transformation}} ==
=== Decarbonisation of the global energy system ===
{{Main/ja|:en:Energy transition}}
The emissions reductions necessary to keep global warming below 2{{Nbsp}}°C will require a system-wide transformation of the way energy is produced, distributed, stored, and consumed. For a society to replace one form of energy with another, multiple technologies and behaviours in the energy system must change. For example, transitioning from oil to solar power as the energy source for cars requires the generation of solar electricity, modifications to the electrical grid to accommodate fluctuations in solar panel output or the introduction of variable battery chargers and higher overall demand, adoption of [[electric cars]], and networks of [[Electric vehicle charging network|electric vehicle charging]] facilities and repair shops.
[[File:2015- Investment in clean energy - IEA.svg |thumb |2025年までに、エネルギー転換への投資は[[:en:fossil fuel|化石燃料]](石油、天然ガス、石炭)への投資の約2倍に増加した。]]
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
=== 地球のエネルギーシステムの脱炭素化 ===
Many climate change mitigation pathways envision three main aspects of a low-carbon energy system:
* The use of low-emission energy sources to produce electricity
* [[Electrification]] – that is increased use of electricity instead of directly burning fossil fuels
* Accelerated adoption of energy efficiency measures
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
* 電力生産における低排出エネルギー源の利用
Some energy-intensive technologies and processes are difficult to electrify, including aviation, shipping, and steelmaking. There are several options for reducing the emissions from these sectors: biofuels and synthetic [[carbon-neutral fuels]] can power many vehicles that are designed to burn fossil fuels, however biofuels cannot be sustainably produced in the quantities needed and synthetic fuels are currently very expensive. For some applications, the most prominent alternative to electrification is to develop a system based on sustainably-produced [[hydrogen fuel]].
Full decarbonisation of the global energy system is expected to take several decades and can mostly be achieved with existing technologies. In the IEA's proposal for achieving net zero emissions by 2050, about 35% of the reduction in emissions depends on technologies that are still in development as of 2023. Technologies that are relatively immature include batteries and processes to create carbon-neutral fuels. Developing new technologies requires research and development, [[technology demonstration|demonstration]], and [[experience curve|cost reductions via deployment]].
The transition to a zero-carbon energy system will bring strong [[Co-benefits of climate change mitigation|co-benefits]] for human health: The World Health Organization estimates that efforts to limit global warming to 1.5 °C could save millions of lives each year from reductions to air pollution alone. With good planning and management, pathways exist to provide universal [[Rural electrification|access to electricity]] and [[clean cooking]] by 2030 in ways that are consistent with climate goals. Historically, several countries have made rapid economic gains through coal usage.} However, there remains a window of opportunity for many poor countries and regions to "[[Leapfrogging|leapfrog]]" fossil fuel dependency by developing their energy systems based on renewables, given adequate international investment and knowledge transfer.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
ゼロカーボンエネルギーシステムへの移行は、人間の健康に[[:en:Co-benefits of climate change mitigation|強い共同便益]]をもたらすだろう。世界保健機関(WHO)は、地球温暖化を1.5℃に抑える努力が、大気汚染の削減のみで毎年数百万人の命を救う可能性があると推定している。適切な計画と管理があれば、気候目標と整合する形で、2030年までに普遍的な[[:en:Rural electrification|電力へのアクセス]]と[[:en:clean cooking|クリーンな調理]]を提供する道筋が存在する。歴史的に見れば、いくつかの国は石炭の使用を通じて急速な経済的利益を得てきた。しかし、適切な国際投資と知識移転があれば、多くの貧しい国や地域には、再生可能エネルギーに基づいたエネルギーシステムを開発することで、化石燃料への依存から「[[:en:Leapfrogging|リープフロッグ]]」する機会がまだ残されている。
===Integrating variable energy sources===
{{See also|Grid balancing}}[[File:SoSie+SoSchiff Ansicht.jpg|thumb|alt=Short terraces of houses, with their entire sloping roofs covered with solar panels| Buildings in the [[Solar Settlement at Schlierberg]], Germany, produce more energy than they consume. They incorporate rooftop solar panels and are built for maximum energy efficiency.]]
To deliver reliable electricity from [[variable renewable energy]] sources such as wind and solar, electrical power systems require flexibility. Most [[electrical grid]]s were constructed for non-intermittent energy sources such as coal-fired power plants. As larger amounts of solar and wind energy are integrated into the grid, changes have to be made to the energy system to ensure that the supply of electricity is matched to demand. In 2019, these sources generated 8.5% of worldwide electricity, a share that has grown rapidly.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
===可変性エネルギー源の統合===
There are various ways to make the electricity system more flexible. In many places, wind and solar generation are complementary on a daily and a seasonal scale: there is more wind during the night and in winter when solar energy production is low. Linking different geographical regions through [[High-voltage direct current|long-distance transmission lines]] allows for further cancelling out of variability. Energy demand can be shifted in time through [[energy demand management]] and the use of [[smart grids]], matching the times when variable energy production is highest. With [[grid energy storage]], energy produced in excess can be released when needed. Further flexibility could be provided from [[sector coupling]], that is coupling the electricity sector to the heat and mobility sector via [[power-to-heat]]-systems and electric vehicles.
{{See also/ja|:en:Grid balancing}}
</div>
[[File:SoSie+SoSchiff Ansicht.jpg|thumb|alt=短いテラスハウス群で、その傾斜した屋根全体がソーラーパネルで覆われている| ドイツの[[:en:Solar Settlement at Schlierberg|シュリーアベルク太陽エネルギー住宅団地]]の建物は、消費するよりも多くのエネルギーを生産する。これらは屋上ソーラーパネルを組み込んでおり、最大のエネルギー効率を目指して建設されている。]]
Building overcapacity for wind and solar generation can help ensure that enough electricity is produced even during poor weather. In optimal weather, energy generation may have to be [[Curtailment (electricity)|curtailed]] if excess electricity cannot be used or stored. The final demand-supply mismatch may be covered by using [[Dispatchable generation|dispatchable energy sources]] such as hydropower, bioenergy, or natural gas.
。[[:en:High-voltage direct current|長距離送電線]]で異なる地理的地域を結ぶことで、変動性をさらに相殺することができる。[[:en:energy demand management|エネルギー需要管理]]や[[:en:smart grids|スマートグリッド]]の活用により、エネルギー需要を時間的にシフトさせ、可変性エネルギー生産が最大となる時間帯に合わせることが可能である。
</div>
[[:en:grid energy storage|系統蓄電]]があれば、余剰に生産されたエネルギーを必要な時に放出できます。さらに、[[:en:sector coupling|セクターカップリング]](電力部門と熱・モビリティ部門を[[:en:power-to-heat|パワー・トゥ・ヒート]]システムや電気自動車で連携させること)によっても柔軟性を高めることができる。
{{Main/ja|:en:Energy storage|:en:Grid energy storage}}
{{Imageright|
{{Imageright|
{{multiple image | total_width=450
{{multiple image | total_width=450
|image1 = 20240706 Energy storage - renewable energy - battery - 100 ms.gif |caption1= Energy from renewable sources is converted to potential energy that is stored in devices such as electric batteries. The stored potential energy is later converted to electricity and added to the power grid, even when the original source is unavailable.
|image1 = 20240706 Energy storage - renewable energy - battery - 100 ms.gif |caption1=再生可能エネルギー源からのエネルギーは、電気バッテリーなどの装置に蓄積される位置エネルギーに変換される。貯蔵された位置エネルギーは、元の供給源が利用できない場合でも、後に電気に変換され、送電網に追加される。
| image2 = 1 MW 4 MWh Turner Energy Storage Project in Pullman, WA.jpg |caption2= A battery storage facility
| image2 = 1 MW 4 MWh Turner Energy Storage Project in Pullman, WA.jpg |caption2=バッテリー貯蔵施設
}}}}
}}}}
Energy storage helps overcome barriers to intermittent renewable energy and is an important aspect of a sustainable energy system. The most commonly used and available storage method is [[pumped-storage hydroelectricity]], which requires locations with large differences in height and access to water. [[Battery storage|Batteries]], especially [[Lithium-ion battery|lithium-ion batteries]], are also deployed widely. Batteries typically store electricity for short periods; research is ongoing into technology with sufficient capacity to last through seasons.
Costs of utility-scale batteries in the US have fallen by around 70% since 2015, however the cost and low [[energy density]] of batteries makes them impractical for the very large energy storage needed to balance inter-seasonal variations in energy production. Pumped hydro storage and [[power-to-gas]] (converting electricity to gas and back) with capacity for multi-month usage has been implemented in some locations. According to the International Energy Agency (IEA), global battery storage capacity is expected to increase nearly 15-fold between 2021 and 2030, driven by falling costs and increased investment in clean infrastructure.
[[File:Heat Pump.jpg|thumb|alt=Photograph two fans, the outdoor section of a heat pump|The outdoor section of a [[heat pump]]. In contrast to oil and gas boilers, they use electricity and are highly efficient. As such, electrification of heating can significantly reduce emissions.]]
Compared to the rest of the energy system, emissions can be reduced much faster in the electricity sector. As of 2019, 37% of global electricity is produced from low-carbon sources (renewables and nuclear energy). Fossil fuels, primarily coal, produce the rest of the electricity supply. One of the easiest and fastest ways to reduce greenhouse gas emissions is to phase out coal-fired power plants and increase renewable electricity generation.
Climate change mitigation pathways envision extensive electrification—the use of electricity as a substitute for the direct burning of fossil fuels for heating buildings and for transport. Ambitious climate policy would see a doubling of energy share consumed as electricity by 2050, from 20% in 2020.
One of the challenges in providing universal access to electricity is distributing power to rural areas. Off-grid and [[Mini-grids|mini-grid]] systems based on renewable energy, such as small solar PV installations that generate and store enough electricity for a village, are important solutions. Wider access to reliable electricity would lead to less use of [[kerosene lighting]] and diesel generators, which are currently common in the developing world.
Infrastructure for generating and storing renewable electricity requires minerals and metals, such as [[cobalt]] and [[lithium]] for batteries and [[copper]] for solar panels. Recycling can meet some of this demand if product lifecycles are well-designed, however achieving net zero emissions would still require major increases in mining for 17 types of metals and minerals. A small group of countries or companies sometimes dominate the markets for these commodities, raising geopolitical concerns. Most of the world's cobalt, for instance, is [[Mining industry of the Democratic Republic of the Congo|mined in the Democratic Republic of the Congo]], a politically unstable region where mining is often associated with human rights risks. More diverse geographical sourcing may ensure a more flexible and less brittle [[supply chain]].
これらの商品の市場は、ごく少数の国や企業が支配していることがあり、地政学的な懸念を引き起こしている。例えば、世界のコバルトのほとんどは[[:en:Mining industry of the Democratic Republic of the Congo|コンゴ民主共和国で採掘されている]]。この国は政治的に不安定な地域であり、採掘は人権リスクと関連していることがしばしばある。より多様な地理的調達は、より柔軟で強靭な[[:en:supply chain|サプライチェーン]]を確保することにつながるであろう。
Hydrogen gas is widely discussed as a fuel with potential to reduce greenhouse gas emissions. This requires hydrogen to be produced cleanly, in quantities to supply in sectors and applications where cheaper and more energy efficient [[Climate change mitigation|mitigation]] alternatives are limited. These applications include heavy industry and long-distance transport.
Hydrogen can be deployed as an energy source in [[fuel cells]] to produce electricity, or via combustion to generate heat. When hydrogen is consumed in fuel cells, the only emission at the point of use is water vapour. Combustion of hydrogen can lead to the thermal formation of harmful [[NOx|nitrogen oxides]]. The overall lifecycle emissions of hydrogen depend on how it is produced. Nearly all of the world's current supply of hydrogen is created from fossil fuels.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
水素を生産する主な方法は[[:en:steam methane reforming|水蒸気メタン改質]]であり、[[:en:methane|メタン]](天然ガスの主成分)と水蒸気の間の化学反応によって水素が生産される。このプロセスで1トンの水素を生産すると、6.6〜9.3トンの二酸化炭素が排出される。二酸化炭素回収・貯留(CCS)によってこれらの排出量の大部分を除去できるものの、天然ガスからの水素の全体的なカーボンフットプリントを評価することは、一部には天然ガス自体の生産で発生する排出([[:en:gas venting|放出]]および[[:en:Fugitive gas emissions|漏洩]]メタンを含む)のため、2021年現在、困難である。
The main method of producing hydrogen is [[steam methane reforming]], in which hydrogen is produced from a chemical reaction between steam and [[methane]], the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. While carbon capture and storage (CCS) could remove a large fraction of these emissions, the overall carbon footprint of hydrogen from natural gas is difficult to assess {{As of|2021|lc=y}}, in part because of emissions (including [[Gas venting|vented]] and [[Fugitive gas emissions|fugitive]] methane) created in the production of the natural gas itself.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
電解は、電気が持続可能な方法で生成された場合に限り、水分子を分解して持続可能な水素を生成するために使用できる。しかし、この[[:en:electrolysis|電気分解]]プロセスは現在、CCSなしでメタンから水素を生成するよりも高価であり、エネルギー変換効率は本質的に低い。水素は[[変動性再生可能エネルギー]]の余剰があるときに生産し、貯蔵して熱を生成したり、電力を再生成したりするのに使用できる。さらに[[:en:green ammonia|グリーンアンモニア]]や[[:en:green methanol|グリーンメタノール]]などの液体燃料に変換することも可能である。[[:en:Electrolysis of water|水素電解装置]]の革新は、電力からの大規模な水素生産を[[:en:Hydrogen economy#Costs|より費用競争力のあるもの]]にする可能性がある。
Electricity can be used to split water molecules, producing sustainable hydrogen provided the electricity was generated sustainably. However, this [[electrolysis]] process is currently more expensive than creating hydrogen from methane without CCS and the efficiency of energy conversion is inherently low. Hydrogen can be produced when there is a surplus of [[Variable renewable energy|variable renewable electricity]], then stored and used to generate heat or to re-generate electricity. It can be further transformed into liquid fuels such as [[green ammonia]] and [[green methanol]]. Innovation in [[Electrolysis of water|hydrogen electrolysers]] could make large-scale production of hydrogen from electricity [[Hydrogen economy#Costs|more cost-competitive]].
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
水素燃料は、鉄鋼、セメント、ガラス、化学物質の工業生産に必要な高熱を生成できるため、製鋼用の[[:en:electric arc furnace|電気アーク炉]]などの他の技術とともに、産業の[[:en:decarbonisation|脱炭素化]]に貢献する。製鋼において、水素はクリーンな燃料として機能すると同時に、石炭由来の[[:en:coke (fuel)|コークス]]に代わる低炭素の触媒としても機能しうる。輸送の脱炭素化に用いられる水素は、海運、航空、そして重貨物車両である程度の規模で最大の用途が見出される可能性が高い。[[:en:light duty vehicle|軽自動車]]の場合、水素は他の[[:en:alternative fuel vehicle|代替燃料車両]]に大きく後れを取っており、特に[[:en:battery electric vehicles|バッテリー式電気自動車]]の普及率と比較すると、将来的には重要な役割を果たさない可能性がある。
Hydrogen fuel can produce the intense heat required for industrial production of steel, cement, glass, and chemicals, thus contributing to the decarbonisation of industry alongside other technologies, such as [[electric arc furnace]]s for steelmaking. For steelmaking, hydrogen can function as a clean fuel and simultaneously as a low-carbon catalyst replacing coal-derived [[coke (fuel)|coke]]. Hydrogen used to decarbonise transportation is likely to find its largest applications in shipping, aviation and to a lesser extent heavy goods vehicles. For light duty vehicles including passenger cars, hydrogen is far behind other [[alternative fuel vehicle]]s, especially compared with the rate of adoption of [[battery electric vehicles]], and may not play a significant role in future.
Disadvantages of hydrogen as a fuel include high costs of storage and distribution due to hydrogen's explosivity, its large volume compared to other fuels, and its tendency to make pipes brittle.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
<span id="Energy_usage_technologies"></span>
=== Energy usage technologies ===
=== エネルギー利用技術 ===
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====交通====
====Transport====
[[File:Hornby Street Separated Bike Lane.jpg|thumb|right|alt=カナダのバンクーバーで自転車レーンを利用するサイクリストのグループ|[[:en:Utility cycling|実用自転車]]のインフラ、例えば[[:en:Vancouver|バンクーバー]]のこの[[:en:bike lane|自転車レーン]]は、持続可能な交通を促進する。]]
[[File:Hornby Street Separated Bike Lane.jpg|thumb|right|alt=Group of cyclists using a bike lane in Vancouver, Canada|[[Utility cycling]] infrastructure, such as this [[bike lane]] in [[Vancouver]], encourages sustainable transport.>]]
Transport accounts for 14% of global greenhouse gas emissions, but there are multiple ways to make transport more sustainable. [[Public transport]] typically emits fewer greenhouse gases per passenger than personal vehicles, since trains and buses can carry many more passengers at once. Short-distance flights can be replaced by [[high-speed rail]], which is more efficient, especially when electrified.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:Energy efficiency in transport|自動車のエネルギー効率]]は時間とともに向上しているが、[[:en:electric vehicle|電気自動車]]への移行は、輸送の脱炭素化と大気汚染削減に向けた重要なさらなる一歩である。交通関連の大気汚染の大部分は、路面の粉塵やタイヤ、ブレーキパッドの摩耗に由来する粒子状物質で構成されている。これらの[[:en:Non-tailpipe emissions|非排気ガス排出源]]からの汚染を大幅に削減することは、電化だけでは達成できない。車両を軽量化し、走行を減らすなどの対策が必要である。特に軽自動車は、[[:en:Electric battery|バッテリー技術]]を用いた脱炭素化の最有力候補である。世界の[[carbon dioxide/ja|CO2]]排出量の25%は、依然として運輸部門に由来している。
The [[Energy efficiency in transport|energy efficiency of cars]] has increased over time, but shifting to [[electric vehicle]]s is an important further step towards decarbonising transport and reducing air pollution. A large proportion of traffic-related air pollution consists of particulate matter from road dust and the wearing-down of tyres and brake pads. Substantially reducing pollution from these [[Non-tailpipe emissions|non-tailpipe]] sources cannot be achieved by electrification; it requires measures such as making vehicles lighter and driving them less. Light-duty cars in particular are a prime candidate for decarbonization using [[Electric battery|battery technology]]. 25% of the world's [[Carbon dioxide|{{CO2}}]] emissions still originate from the transportation sector.
Long-distance freight transport and aviation are difficult sectors to electrify with current technologies, mostly because of the weight of [[Electric vehicle battery|batteries]] needed for long-distance travel, battery recharging times, and limited battery lifespans. Where available, freight transport by ship [[Rail freight transport|and rail]] is generally more sustainable than by air and by road. [[Hydrogen vehicles]] may be an option for larger vehicles such as lorries. Many of the techniques needed to lower emissions from shipping and aviation are still early in their development, with [[ammonia]] (produced from hydrogen) a promising candidate for shipping fuel. [[Aviation biofuel]] may be one of the better uses of bioenergy if emissions are captured and stored during manufacture of the fuel.
エネルギー使用量の3分の1以上は、建物とその建設によるものである。建物の暖房において、化石燃料やバイオマスを燃焼させる代替手段には、[[:en:heat pumpsヒートポンプ]]や[[:en:Electric resistance heater|電気ヒーター]]による電化、[[:en:Geothermal heating|地熱エネルギー]]、[[:en:central solar heating|中央式太陽熱供給]]、[[:en:waste heat|廃熱]]の再利用、[[:en:seasonal thermal energy storage|季節間蓄熱]]などがある。ヒートポンプは、単一の機器で暖房と冷房の両方を提供する。IEAは、ヒートポンプが世界の空間暖房と給湯の必要量の90%以上を賄うことができると推定している。
Over one-third of energy use is in buildings and their construction. To heat buildings, alternatives to burning fossil fuels and biomass include electrification through [[heat pumps]] or [[Electric resistance heater|electric heaters]], [[Geothermal heating|geothermal energy]], [[central solar heating]], reuse of [[waste heat]], and [[seasonal thermal energy storage]]. Heat pumps provide both heat and air conditioning through a single appliance. The IEA estimates heat pumps could provide over 90% of space and water heating requirements globally.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
建物の暖房において非常に効率的な方法として、[[:en:district heating|地域熱供給]]がある。これは、集中型の場所で熱を生成し、[[:en:insulated pipe|断熱管]]を通して複数の建物に分配するシステムである。従来、ほとんどの地域熱供給システムは化石燃料を使用していたが、[[:en:District heating#Fourth generation|現代的]]なものや[[:en:cold district heating|コールド地域熱供給]]システムは、再生可能エネルギーの高い割合を使用するように設計されている。[[File:Aghazade mansion.jpg|thumb|alt=Building with windcatcher towers|イランの[[:en:windcatcher|ウィンドキャッチャー]]タワーのような[[:en:Passive cooling|パッシブクーリング]]機能は、エネルギーを使用せずに建物に冷気を取り込む。]]建物の冷房は、[[:en:Passive solar building design|パッシブ建築設計]]、[[:en:urban heat island|ヒートアイランド現象]]を最小限に抑える計画、および冷水をパイプで複数の建物を冷却する[[:en:district cooling|地域冷房]]システムによって、より効率的にできる。[[:en:Air conditioning|エアコン]]は大量の電力を必要とし、貧しい世帯にとっては必ずしも手頃な価格ではない。一部の国が[[:en:Kigali Amendment|キガリ改正]]を批准し、気候に優しい冷媒のみを使用するようになっていないため、一部のエアコンユニットでは依然として[[:en:refrigerant|冷媒]]として温室効果ガスを使用している。
A highly efficient way to heat buildings is through [[district heating]], in which heat is generated in a centralised location and then distributed to multiple buildings through [[insulated pipe]]s. Traditionally, most district heating systems have used fossil fuels, but [[District heating#Fourth generation|modern]] and [[cold district heating]] systems are designed to use high shares of renewable energy.[[File:Aghazade mansion.jpg|thumb|alt=Building with windcatcher towers|[[Passive cooling]] features, such as these [[windcatcher]] towers in Iran, bring cool air into buildings without any use of energy.]]Cooling of buildings can be made more efficient through [[Passive solar building design|passive building design]], planning that minimises the [[urban heat island]] effect, and [[district cooling]] systems that cool multiple buildings with piped cold water. [[Air conditioning]] requires large amounts of electricity and is not always affordable for poorer households. Some air conditioning units still use [[refrigerant]]s that are greenhouse gases, as some countries have not ratified the [[Kigali Amendment]] to only use climate-friendly refrigerants.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
====調理====
==== Cooking ====
{{Further/ja|:en:Energy poverty and cooking|}}[[File:Kookplaat inductie.JPG|thumb|alt=Electric induction oven|調理においては、[[:en:Induction cooking|電気IH調理器]]が最もエネルギー効率が高く安全な選択肢の一つである。]]
{{Further|Energy poverty and cooking|}}[[File:Kookplaat inductie.JPG|thumb|alt=Electric induction oven|For cooking, [[Induction cooking|electric induction stoves]] are one of the most energy-efficient and safest options.]]In developing countries where populations suffer from [[energy poverty]], polluting fuels such as wood or animal dung are often used for cooking. Cooking with these fuels is generally unsustainable, because they release harmful smoke and because harvesting wood can lead to forest degradation. The universal adoption of clean cooking facilities, which are already ubiquitous in rich countries, would dramatically improve health and have minimal negative effects on climate. Clean cooking facilities, e.g. cooking facilities that produce less indoor soot, typically use natural gas, [[liquefied petroleum gas]] (both of which consume oxygen and produce carbon-dioxide) or electricity as the energy source; biogas systems are a promising alternative in some contexts. [[Improved cookstoves]] that burn biomass more efficiently than traditional stoves are an interim solution where transitioning to clean cooking systems is difficult.
Over one-third of energy use is by industry. Most of that energy is deployed in thermal processes: generating heat, drying, and [[refrigeration]]. The share of renewable energy in industry was 14.5% in 2017—mostly low-temperature heat supplied by bioenergy and electricity. The most energy-intensive activities in industry have the lowest shares of renewable energy, as they face limitations in generating heat at temperatures over {{convert|200|C|sigfig=2}}.
For some industrial processes, commercialisation of technologies that have not yet been built or operated at full scale will be needed to eliminate greenhouse gas emissions. [[Steelmaking]], for instance, is difficult to electrify because it traditionally uses [[Coke (fuel)|coke]], which is derived from coal, both to create very high-temperature heat and as an ingredient in the steel itself. The production of plastic, cement, and fertilisers also requires significant amounts of energy, with limited possibilities available to decarbonise. A switch to a [[circular economy]] would make industry more sustainable as it involves recycling more and thereby using less energy compared to investing energy to mine and refine new [[raw materials]].
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
==政府の政策{{Anchor|Government policies}}==
==Government policies==
{{Further/ja|r|:en:Politics of climate change|:en:Energy policy}}
{{Further|Politics of climate change|Energy policy}}
{{quote box
{{quote box
| halign = left
| halign = left
| quote = "Bringing new energy technologies to market can often take several decades, but the imperative of reaching net‐zero emissions globally by 2050 means that progress has to be much faster. Experience has shown that the role of government is crucial in shortening the time needed to bring new technology to market and to diffuse it widely."
| author = [[:en:International Energy Agency|国際エネルギー機関]](2021)
| width = 25%
| width = 25%
}}
}}
Well-designed government policies that promote energy system transformation can lower greenhouse gas emissions and improve air quality simultaneously, and in many cases can also increase energy security and lessen the financial burden of using energy.
[[Environmental regulations]] have been used since the 1970s to promote more sustainable use of energy. Some governments have committed to dates for [[Coal phase-out|phasing out coal-fired power plants]] and ending new [[fossil fuel exploration]]. Governments can require that new cars produce zero emissions, or new buildings are heated by electricity instead of gas. [[Renewable portfolio standard]]s in several countries require utilities to increase the percentage of electricity they generate from renewable sources.
Governments can accelerate energy system transformation by leading the development of infrastructure such as long-distance electrical transmission lines, smart grids, and hydrogen pipelines. In transport, appropriate infrastructure and incentives can make travel more efficient and less car-dependent. [[Urban planning]] that discourages [[Urban sprawl|sprawl]] can reduce energy use in local transport and buildings while enhancing quality of life. Government-funded research, procurement, and incentive policies have historically been critical to the development and maturation of clean energy technologies, such as solar and lithium batteries. In the IEA's scenario for a net zero-emission energy system by 2050, public funding is rapidly mobilised to bring a range of newer technologies to the demonstration phase and to encourage deployment.
[[File:MicrocityCarSharingHangzhou.jpg|thumb|alt=Photograph of a row of cars plugged into squat metal boxes under a roof| Several countries and the European Union have committed to dates for all new cars to be [[zero-emissions vehicle]]s.]]
[[Carbon pricing]] (such as a tax on {{CO2}} emissions) gives industries and consumers an incentive to reduce emissions while letting them choose how to do so. For example, they can shift to low-emission energy sources, improve energy efficiency, or reduce their use of energy-intensive products and services. Carbon pricing has encountered strong [[Politics of climate change|political pushback]] in some jurisdictions, whereas energy-specific policies tend to be politically safer. Most studies indicate that to limit global warming to 1.5{{Nbsp}}°C, carbon pricing would need to be complemented by stringent energy-specific policies.
As of 2019, the price of carbon in most regions is too low to achieve the goals of the Paris Agreement. [[Carbon tax]]es provide a source of revenue that can be used to lower other taxes or help lower-income households afford higher energy costs. Some governments, such as the EU and the UK, are exploring the use of [[carbon border adjustments]]. These place [[tariff]]s on imports from countries with less stringent climate policies, to ensure that industries subject to internal carbon prices remain competitive.
The scale and pace of policy reforms that have been initiated as of 2020 are far less than needed to fulfil the climate goals of the Paris Agreement. In addition to domestic policies, greater international cooperation is required to accelerate innovation and to assist poorer countries in establishing a sustainable path to full energy access.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
各国は、雇用創出のために再生可能エネルギーを支援する場合がある。[[:en:International Labour Organization|国際労働機関]]の推定によると、地球温暖化を2°Cに制限する取り組みは、経済のほとんどの部門で正味の雇用創出をもたらすという。具体的には、2030年までに再生可能電力の生成、建物のエネルギー効率改善、電気自動車への移行といった分野で2,400万人の新規雇用が創出されると予測されている。一方で、鉱業や化石燃料などの部門では600万人の雇用が失われる見込みである。政府は、化石燃料産業に依存する労働者や地域が代替の経済的機会を確実に得られるよう、[[:en:just transition|公正な移行]]を保証することで、持続可能なエネルギーへの移行を政治的・社会的に実行可能なものにできる。
Countries may support renewables to create jobs. The [[International Labour Organization]] estimates that efforts to limit global warming to 2 °C would result in net job creation in most sectors of the economy. It predicts that 24 million new jobs would be created by 2030 in areas such as renewable electricity generation, improving energy-efficiency in buildings, and the transition to electric vehicles. Six million jobs would be lost, in sectors such as mining and fossil fuels. Governments can make the transition to sustainable energy more politically and socially feasible by ensuring a [[just transition]] for workers and regions that depend on the fossil fuel industry, to ensure they have alternative economic opportunities.
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
==財政{{Anchor|Finance}}==
==Finance==
{{Further/ja|:en:Climate finance}}
{{Further|Climate finance}}
[[File:20210119 Renewable energy investment - 2004- BloombergNEF.svg |thumb|upright=1.35|alt=Graph of global investment for renewable energy, electrified heat and transport, and other non-fossil-fuel energy sources |[[:en:Electrified transport|電動輸送]]と再生可能エネルギーは、[[:en:renewable energy transition|再生可能エネルギーへの移行]]における主要な投資分野である。]]
[[File:20210119 Renewable energy investment - 2004- BloombergNEF.svg |thumb|upright=1.35|alt=Graph of global investment for renewable energy, electrified heat and transport, and other non-fossil-fuel energy sources |Electrified transport and renewable energy are key areas of investment for the [[renewable energy transition]].]]
Raising enough money for innovation and investment is a prerequisite for the energy transition. The IPCC estimates that to limit global warming to 1.5 °C, US$2.4 trillion would need to be invested in the energy system each year between 2016 and 2035. Most studies project that these costs, equivalent to 2.5% of world GDP, would be small compared to the economic and health benefits. Average annual investment in low-carbon energy technologies and energy efficiency would need to be six times more by 2050 compared to 2015. Underfunding is particularly acute in the least developed countries, which are not attractive to the private sector.
The [[United Nations Framework Convention on Climate Change]] estimates that climate financing totalled $681 billion in 2016. Most of this is private-sector investment in renewable energy deployment, public-sector investment in sustainable transport, and private-sector investment in energy efficiency. The Paris Agreement includes a pledge of an extra $100 billion per year from developed countries to poor countries, to do climate change mitigation and adaptation. This goal has not been met and measurement of progress has been hampered by unclear accounting rules. If energy-intensive businesses like chemicals, fertilizers, ceramics, steel, and non-ferrous metals invest significantly in R&D, its usage in industry might amount to between 5% and 20% of all energy used.
Fossil fuel funding and [[energy subsidy#Fossil fuel subsidies|subsidies]] are a significant barrier to the energy transition.Ending these could lead to a 28% reduction in global carbon emissions and a 46% reduction in air pollution deaths. Funding for clean energy has been largely unaffected by the [[COVID-19 pandemic]], and pandemic-related economic stimulus packages offer possibilities for a [[green recovery]].
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
==外部リンク==
==External links==
{{Spoken Wikipedia|date=10 January 2022|En-Sustainable_energy-article.ogg}}
{{Spoken Wikipedia|date=10 January 2022|En-Sustainable_energy-article.ogg}}
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
{{Footer energy}}
{{Footer energy}}
{{Environmental technology}}
{{Environmental technology}}
Line 476:
Line 320:
[[Category:Sustainability and environmental management]]
[[Category:Sustainability and environmental management]]