Sustainable energy/ja: Difference between revisions

Sustainable energy/ja
Created page with "====調理==== {{Further/ja|:en:Energy poverty and cooking|}}thumb|alt=Electric induction oven|調理においては、[[:en:Induction cooking|電気IH調理器が最もエネルギー効率が高く安全な選択肢の一つである。]] エネルギー貧困に苦しむ開発途上国では、調理に薪や動物の糞といった汚染燃料がしばしば用いられている。これらの燃料での調理..."
Created page with "====交通==== thumb|right|alt=カナダのバンクーバーで自転車レーンを利用するサイクリストのグループ|[[:en:Utility cycling|実用自転車のインフラ、例えばバンクーバーのこの自転車レーンは、持続可能な交通を促進する。]] {{main/ja|:en:Sustainable transport}} 交通は世界の温室効果ガス排出量の14%を占めるが..."
 
(5 intermediate revisions by the same user not shown)
Line 240: Line 240:
=== エネルギー利用技術 ===
=== エネルギー利用技術 ===


<div lang="en" dir="ltr" class="mw-content-ltr">
====交通====
====Transport====
[[File:Hornby Street Separated Bike Lane.jpg|thumb|right|alt=カナダのバンクーバーで自転車レーンを利用するサイクリストのグループ|[[:en:Utility cycling|実用自転車]]のインフラ、例えば[[:en:Vancouver|バンクーバー]]のこの[[:en:bike lane|自転車レーン]]は、持続可能な交通を促進する。]]
[[File:Hornby Street Separated Bike Lane.jpg|thumb|right|alt=Group of cyclists using a bike lane in Vancouver, Canada|[[Utility cycling]] infrastructure, such as this [[bike lane]] in [[Vancouver]], encourages sustainable transport.>]]
{{main/ja|:en:Sustainable transport}}
{{main|Sustainable transport}}
交通は世界の温室効果ガス排出量の14%を占めるが、交通をより持続可能にする方法は複数ある。[[:en:Public transport|公共交通機関]]は、列車やバスが一度に多くの乗客を運べるため、自家用車よりも乗客あたりの温室効果ガス排出量が少ないのが一般的である。短距離のフライトは、より効率的で、特に電化されている場合には、[[:en:high-speed rail|高速鉄道]]に置き換えられる。
Transport accounts for 14% of global greenhouse gas emissions, but there are multiple ways to make transport more sustainable. [[Public transport]] typically emits fewer greenhouse gases per passenger than personal vehicles, since trains and buses can carry many more passengers at once. Short-distance flights can be replaced by [[high-speed rail]], which is more efficient, especially when electrified.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
[[:en:Energy efficiency in transport|自動車のエネルギー効率]]は時間とともに向上しているが、[[:en:electric vehicle|電気自動車]]への移行は、輸送の脱炭素化と大気汚染削減に向けた重要なさらなる一歩である。交通関連の大気汚染の大部分は、路面の粉塵やタイヤ、ブレーキパッドの摩耗に由来する粒子状物質で構成されている。これらの[[:en:Non-tailpipe emissions|非排気ガス排出源]]からの汚染を大幅に削減することは、電化だけでは達成できない。車両を軽量化し、走行を減らすなどの対策が必要である。特に軽自動車は、[[:en:Electric battery|バッテリー技術]]を用いた脱炭素化の最有力候補である。世界の[[carbon dioxide/ja|CO2]]排出量の25%は、依然として運輸部門に由来している。
The [[Energy efficiency in transport|energy efficiency of cars]] has increased over time, but shifting to [[electric vehicle]]s is an important further step towards decarbonising transport and reducing air pollution. A large proportion of traffic-related air pollution consists of particulate matter from road dust and the wearing-down of tyres and brake pads. Substantially reducing pollution from these [[Non-tailpipe emissions|non-tailpipe]] sources cannot be achieved by electrification; it requires measures such as making vehicles lighter and driving them less. Light-duty cars in particular are a prime candidate for decarbonization using [[Electric battery|battery technology]]. 25% of the world's [[Carbon dioxide|{{CO2}}]] emissions still originate from the transportation sector.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
長距離の貨物輸送と航空は、現在の技術では電化が困難な分野である。主に、長距離移動に必要な[[:en:Electric vehicle battery|バッテリー]]の重量、バッテリーの再充電時間、および限られたバッテリー寿命が理由である。利用可能な場合、船舶および[[:en:Rail freight transport|鉄道]]による貨物輸送は、航空および道路による輸送よりも一般的に持続可能性が高い。[[:en:Hydrogen vehicles|水素自動車]]は、トラックのような大型車両の選択肢となる可能性がある。海運や航空からの排出量を削減するために必要な技術の多くは、まだ開発の初期段階にあり、[[ammonia/ja|アンモニア]](水素から生産される)は船舶燃料として有望な候補である。航空バイオ燃料は、燃料製造中に排出物が捕捉・貯蔵されるのであれば、バイオエネルギーのより良い用途の一つとなる可能性がある。
Long-distance freight transport and aviation are difficult sectors to electrify with current technologies, mostly because of the weight of [[Electric vehicle battery|batteries]] needed for long-distance travel, battery recharging times, and limited battery lifespans.  Where available, freight transport by ship [[Rail freight transport|and rail]] is generally more sustainable than by air and by road. [[Hydrogen vehicles]] may be an option for larger vehicles such as lorries. Many of the techniques needed to lower emissions from shipping and aviation are still early in their development, with [[ammonia]] (produced from hydrogen) a promising candidate for shipping fuel. [[Aviation biofuel]] may be one of the better uses of bioenergy if emissions are captured and stored during manufacture of the fuel.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
====建物====
====Buildings====
{{Further/ja|:en:Renewable heat|:en:Green building|:en:Zero-energy building}}
{{Further|Renewable heat|Green building|Zero-energy building}}
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
エネルギー使用量の3分の1以上は、建物とその建設によるものである。建物の暖房において、化石燃料やバイオマスを燃焼させる代替手段には、[[:en:heat pumpsヒートポンプ]][[:en:Electric resistance heater|電気ヒーター]]による電化、[[:en:Geothermal heating|地熱エネルギー]][[:en:central solar heating|中央式太陽熱供給]][[:en:waste heat|廃熱]]の再利用、[[:en:seasonal thermal energy storage|季節間蓄熱]]などがある。ヒートポンプは、単一の機器で暖房と冷房の両方を提供する。IEAは、ヒートポンプが世界の空間暖房と給湯の必要量の90%以上を賄うことができると推定している。
Over one-third of energy use is in buildings and their construction. To heat buildings, alternatives to burning fossil fuels and biomass include electrification through [[heat pumps]] or [[Electric resistance heater|electric heaters]], [[Geothermal heating|geothermal energy]], [[central solar heating]], reuse of [[waste heat]], and [[seasonal thermal energy storage]]. Heat pumps provide both heat and air conditioning through a single appliance. The IEA estimates heat pumps could provide over 90% of space and water heating requirements globally.
</div>


<div lang="en" dir="ltr" class="mw-content-ltr">
建物の暖房において非常に効率的な方法として、[[:en:district heating|地域熱供給]]がある。これは、集中型の場所で熱を生成し、[[:en:insulated pipe|断熱管]]を通して複数の建物に分配するシステムである。従来、ほとんどの地域熱供給システムは化石燃料を使用していたが、[[:en:District heating#Fourth generation|現代的]]なものや[[:en:cold district heating|コールド地域熱供給]]システムは、再生可能エネルギーの高い割合を使用するように設計されている。[[File:Aghazade mansion.jpg|thumb|alt=Building with windcatcher towers|イランの[[:en:windcatcher|ウィンドキャッチャー]]タワーのような[[:en:Passive cooling|パッシブクーリング]]機能は、エネルギーを使用せずに建物に冷気を取り込む。]]建物の冷房は、[[:en:Passive solar building design|パッシブ建築設計]][[:en:urban heat island|ヒートアイランド現象]]を最小限に抑える計画、および冷水をパイプで複数の建物を冷却する[[:en:district cooling|地域冷房]]システムによって、より効率的にできる。[[:en:Air conditioning|エアコン]]は大量の電力を必要とし、貧しい世帯にとっては必ずしも手頃な価格ではない。一部の国が[[:en:Kigali Amendment|キガリ改正]]を批准し、気候に優しい冷媒のみを使用するようになっていないため、一部のエアコンユニットでは依然として[[:en:refrigerant|冷媒]]として温室効果ガスを使用している。
A highly efficient way to heat buildings is through [[district heating]], in which heat is generated in a centralised location and then distributed to multiple buildings through [[insulated pipe]]s. Traditionally, most district heating systems have used fossil fuels, but [[District heating#Fourth generation|modern]] and [[cold district heating]] systems are designed to use high shares of renewable energy.[[File:Aghazade mansion.jpg|thumb|alt=Building with windcatcher towers|[[Passive cooling]] features, such as these [[windcatcher]] towers in Iran, bring cool air into buildings without any use of energy.]]Cooling of buildings can be made more efficient through [[Passive solar building design|passive building design]], planning that minimises the [[urban heat island]] effect, and [[district cooling]] systems that cool multiple buildings with piped cold water. [[Air conditioning]] requires large amounts of electricity and is not always affordable for poorer households. Some air conditioning units still use [[refrigerant]]s that are greenhouse gases, as some countries have not ratified the [[Kigali Amendment]] to only use climate-friendly refrigerants.
</div>


====調理====
====調理====