|
Tags: Mobile edit Mobile web edit |
(One intermediate revision by the same user not shown) |
Line 193: |
Line 193: |
| === 薬物デザイン === | | === 薬物デザイン === |
|
| |
|
| <div lang="en" dir="ltr" class="mw-content-ltr">
| | 一般的な抗生物質に対する耐性菌が増加する中、抗細菌医薬品の新たな[[drug design/ja|デザイン]]は科学研究において引き続き重要である。 FADを使用する特定の代謝タンパク質([[succinate dehydrogenase/ja|複合体II]])は細菌の病原性に不可欠であるため、FAD合成を標的にしたり、FADアナログを作ったりすることは有用な研究分野となりうる。すでに科学者たちは、FADが結合すると通常とる2つの構造を決定している。1つは伸長したコンフォメーション、もう1つはバタフライコンフォメーションで、このコンフォメーションでは分子が実質的に半分に折れ曲がり、アデニン環とイソアロキサジン環が積み重なる。 同様の方法で結合できるが、タンパク質の機能を阻害しないFAD模倣体は、細菌感染を阻害する有用なメカニズムとなりうる。ヒトと細菌のFAD合成は非常に異なる酵素に依存しているため、細菌のFAD合成酵素を標的にした薬物がヒトのFAD合成酵素を阻害する可能性は低い。 |
| New [[drug design|design]] of anti-bacterial medications is of continuing importance in scientific research as bacterial antibiotic resistance to common antibiotics increases. A specific metabolic protein that uses FAD ([[succinate dehydrogenase|Complex II]]) is vital for bacterial virulence, and so targeting FAD synthesis or creating FAD analogs could be a useful area of investigation. Already, scientists have determined the two structures FAD usually assumes once bound: either an extended or a butterfly conformation, in which the molecule essentially folds in half, resulting in the stacking of the adenine and isoalloxazine rings. FAD imitators that are able to bind in a similar manner but do not permit protein function could be useful mechanisms of inhibiting bacterial infection. Alternatively, drugs blocking FAD synthesis could achieve the same goal; this is especially intriguing because human and bacterial FAD synthesis relies on very different enzymes, meaning that a drug made to target bacterial FAD synthase would be unlikely to interfere with the human FAD synthase enzymes.
| |
| </div>
| |
|
| |
|
| <div lang="en" dir="ltr" class="mw-content-ltr">
| | === 光遺伝学 === |
| === Optogenetics ===
| | [[Optogenetics/ja|オプトジェネティクス]]は、非侵襲的な方法で生物学的事象を制御することを可能にする。 この分野は近年、青色光利用FADドメイン(BLUF)のような光感受性を引き起こすものを含む、多くの新しいツールによって進歩している。 BLUFは植物やバクテリアの光受容体に由来する100から140[[amino acid/ja|アミノ酸]]の配列をコードしている。他の[[photoreceptor protein/ja|光受容体]]と同様に、光はBLUFドメインの構造変化を引き起こし、その結果、下流の相互作用が阻害される。現在の研究では、BLUFドメインが付加されたタンパク質と、様々な外部因子がタンパク質にどのような影響を与えるかを調べている。 |
| [[Optogenetics]] allows control of biological events in a non-invasive manner. The field has advanced in recent years with a number of new tools, including those to trigger light sensitivity, such as the Blue-Light-Utilizing FAD domains (BLUF). BLUFs encode a 100 to 140 [[amino acid]] sequence that was derived from photoreceptors in plants and bacteria. Similar to other [[photoreceptor protein|photoreceptors]], the light causes structural changes in the BLUF domain that results in disruption of downstream interactions. Current research investigates proteins with the appended BLUF domain and how different external factors can impact the proteins. | |
| </div>
| |
|
| |
|
| <span id="Treatment_monitoring"></span> | | <span id="Treatment_monitoring"></span> |