All translations

Jump to navigation Jump to search

Enter a message name below to show all available translations.

Message

Found 2 translations.

NameCurrent message text
 h English (en)An idea of the complexity of the [[metabolic network]]s in cells that contain thousands of different enzymes is given by the figure showing the interactions between just 43 proteins and 40 metabolites to the right: the sequences of genomes provide lists containing anything up to 26.500 genes. However, it is now possible to use this genomic data to reconstruct complete networks of biochemical reactions and produce more [[Holism|holistic]] mathematical models that may explain and predict their behavior. These models are especially powerful when used to integrate the pathway and metabolite data obtained through classical methods with data on [[gene expression]] from [[proteomics|proteomic]] and [[DNA microarray]] studies. Using these techniques, a model of human metabolism has now been produced, which will guide future drug discovery and biochemical research. These models are now used in [[Network theory|network analysis]], to classify human diseases into groups that share common proteins or metabolites.
 h Japanese (ja)何千種類もの酵素を含む細胞内の[[metabolic network/ja|代謝ネットワーク]]の複雑さは、右の43のタンパク質と40の代謝産物間の相互作用を示した図が示している。しかし現在では、このゲノムデータを使って生化学反応の完全なネットワークを再構築し、その挙動を説明・予測できるような、より[[Holism/ja|ホリスティック]]な数学モデルを作成することが可能になっている。これらのモデルは、[[proteomics/ja|プロテオミクス]]や[[DNA microarray/ja|DNAマイクロアレイ]]研究から得られた[[gene expression/ja|遺伝子発現]]のデータと、古典的な手法で得られたパスウェイや代謝物のデータを統合するために用いると、特に強力になる。これらの技術を用いて、ヒトの代謝モデルが構築され、将来の創薬や生化学研究の指針となる。これらのモデルは現在、[[:en:Network theory|ネットワーク分析]]に利用され、ヒトの病気を共通のタンパク質や代謝物を持つグループに分類している。