Flavin mononucleotide: Difference between revisions

From Azupedia
Jump to navigation Jump to search
Created page with "{{chembox | Verifiedfields = changed | Watchedfields = changed | verifiedrevid = 461100522 | ImageFile = Flavin mononucleotide v2.svg | ImageSize = 180 | ImageAlt = Skeletal formula of flavin mononucleotide | ImageFile1 = Flavin mononucleotide 3D ball.png | ImageSize1 = 180 | ImageAlt1 = Ball-and-stick model of the flavin mononucleotide molecule | IUPACName = 1-Deoxy-1-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[''g'']pteridin-10(2''H'')-yl)-<small>D</small>-ribitol 5-(dihy..."
 
No edit summary
Line 49: Line 49:
   }}
   }}
}}
}}
{{More citations needed|date=December 2009}}
'''Flavin mononucleotide''' ('''FMN'''), or '''riboflavin-5′-phosphate''', is a [[biomolecule]] produced from [[riboflavin]] (vitamin B<sub>2</sub>) by the enzyme [[riboflavin kinase]] and functions as the [[prosthetic group]] of various [[oxidoreductase]]s, including [[NADH dehydrogenase]], as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH<sup>•</sup>), and reduced (FMNH<sub>2</sub>) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than [[Nicotinamide adenine dinucleotide|NAD]] and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the 'conventional' photo receptors as the signaling state and not an E/Z isomerization.
'''Flavin mononucleotide''' ('''FMN'''), or '''riboflavin-5′-phosphate''', is a [[biomolecule]] produced from [[riboflavin]] (vitamin B<sub>2</sub>) by the enzyme [[riboflavin kinase]] and functions as the [[prosthetic group]] of various [[oxidoreductase]]s, including [[NADH dehydrogenase]], as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH<sup>•</sup>), and reduced (FMNH<sub>2</sub>) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than [[Nicotinamide adenine dinucleotide|NAD]] and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the 'conventional' photo receptors as the signaling state and not an E/Z isomerization.



Revision as of 15:10, 10 April 2024

Flavin mononucleotide
Skeletal formula of flavin mononucleotide
Ball-and-stick model of the flavin mononucleotide molecule
Names
IUPAC name
1-Deoxy-1-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-D-ribitol 5-(dihydrogen phosphate)
Systematic IUPAC name
(2R,3S,4S)-5-(7,8-Dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)-2,3,4-trihydroxypentyl dihydrogen phosphate
Other names
  • FMN
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
MeSH Flavin+mononucleotide
UNII
Properties
C17H21N4O9P
Molar mass 456.344 g/mol
Melting point 195 °C

Flavin mononucleotide (FMN), or riboflavin-5′-phosphate, is a biomolecule produced from riboflavin (vitamin B2) by the enzyme riboflavin kinase and functions as the prosthetic group of various oxidoreductases, including NADH dehydrogenase, as well as cofactor in biological blue-light photo receptors. During the catalytic cycle, a reversible interconversion of the oxidized (FMN), semiquinone (FMNH), and reduced (FMNH2) forms occurs in the various oxidoreductases. FMN is a stronger oxidizing agent than NAD and is particularly useful because it can take part in both one- and two-electron transfers. In its role as blue-light photo receptor, (oxidized) FMN stands out from the 'conventional' photo receptors as the signaling state and not an E/Z isomerization.

It is the principal form in which riboflavin is found in cells and tissues. It requires more energy to produce, but is more soluble than riboflavin. In cells, FMN occurs freely circulating but also in several covalently bound forms. Covalently or non-covalently bound FMN is a cofactor of many enzymes playing an important pathophysiological role in cellular metabolism. For example dissociation of flavin mononucleotide from mitochondrial complex I has been shown to occur during ischemia/reperfusion brain injury during stroke.

Food additive

Flavin mononucleotide is also used as an orange-red food colour additive, designated in Europe as E number E101a.[1]

E106, a very closely related food dye, is riboflavin-5′-phosphate sodium salt, which consists mainly of the monosodium salt of the 5′-monophosphate ester of riboflavin. It is rapidly turned to free riboflavin after ingestion. It is found in many foods for babies and young children as well as jams, milk products, and sweets and sugar products.

See also


External links

  1. "Current EU approved additives and their E Numbers", Food Standards Agency website, retrieved 15 Dec 2011