Item:Q5516: Difference between revisions
Created a new Item: projective space, space of 1-dimensional linear subspaces (lines passing through the origin) in a vector space |
Created claim: defining formula (P333): \mathbb P^n_K = \operatorname{Proj}K[x_0,x_1,\dotsc,x_n] |
||
(6 intermediate revisions by the same user not shown) | |||
Property / subclass of | |||
Property / subclass of: toric variety / rank | |||
Normal rank | |||
Property / subclass of | |||
Property / subclass of: Grassmannian / rank | |||
Normal rank | |||
Property / subclass of | |||
Property / subclass of: rational variety / rank | |||
Normal rank | |||
Property / subclass of | |||
Property / subclass of: Proj construction / rank | |||
Normal rank | |||
Property / subclass of: Proj construction / qualifier | |||
Property / subclass of | |||
Property / subclass of: projective variety / rank | |||
Normal rank | |||
Property / subclass of | |||
Property / subclass of: projectivization / rank | |||
Normal rank | |||
Property / subclass of: projectivization / qualifier | |||
Property / defining formula | |||
\mathbb P^n_K = \operatorname{Proj}K[x_0,x_1,\dotsc,x_n] | |||
Property / defining formula: / rank | |||
Normal rank |