Citric acid cycle/ja: Difference between revisions

Citric acid cycle/ja
No edit summary
Tags: Mobile edit Mobile web edit
No edit summary
Tags: Mobile edit Mobile web edit
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<languages />
<languages />
[[File:Citric acid cycle with aconitate 2.svg|thumb|upright=2|クエン酸サイクルの概要]]
[[File:Citric acid cycle with aconitate 2.svg|thumb|upright=2|クエン酸サイクルの概要]]
'''クエン酸サイクル'''('''Citric acid cycle''')は、'''Krebs cycle''', '''Szent-Györgyi-Krebs cycle''' '''TCA cycle (tricarboxylic acid cycle)'''とも呼ばれ、 [[carbohydrate/ja|炭水化物]]、[[fat/ja|脂質]]、[[protein/ja|タンパク質]]に由来する[[acetyl-CoA/ja|アセチル-CoA]]の[[Redox|oxidation/ja|酸化還元]]によって[[nutrient/ja|栄養素]]に蓄積されたエネルギーを放出する一連の[[chemical reaction/ja|生化学反応]]である。放出された化学エネルギーは[[Adenosine triphosphate/ja|ATP]]の形で利用できる。[[:en:Hans Krebs (biochemist)|クレブス]]サイクルは、[[anaerobic respiration/ja|嫌気性呼吸]]または[[aerobic respiration/ja|好気性呼吸]]によってエネルギーを生成するために、[[Cellular respiration/ja|呼吸]]を行う[[organism/ja|生物]]([[Fermentation/ja|発酵]]を行う生物とは異なる)によって使用される。さらに、このサイクルは特定の[[amino acid/ja|アミノ酸]]の[[precursor (chemistry)/ja|前駆体]]、および[[reducing agent/ja|還元剤]]を供給する。[[nicotinamide adenine dinucleotide/ja|NADH]]を供給する。多くの[[Metabolic pathway/ja|生化学的経路]]における中心的な重要性は、それが[[metabolism/ja|代謝]]の最も初期の構成要素の一つであったことを示唆している。クエン酸サイクルは「サイクル」と呼ばれているが、[[metabolite/ja|代謝物]]が1つの特定の経路をたどる必要はない。
'''クエン酸サイクル'''('''Citric acid cycle''')は、'''Krebs cycle''', '''Szent-Györgyi-Krebs cycle''' '''TCA cycle (tricarboxylic acid cycle)'''とも呼ばれ、 [[carbohydrate/ja|炭水化物]]、[[fat/ja|脂質]]、[[protein/ja|タンパク質]]に由来する[[acetyl-CoA/ja|アセチル-CoA]]の[[Redox/ja|酸化還元]]によって[[nutrient/ja|栄養素]]に蓄積されたエネルギーを放出する一連の[[chemical reaction/ja|生化学反応]]である。放出された化学エネルギーは[[Adenosine triphosphate/ja|ATP]]の形で利用できる。[[:en:Hans Krebs (biochemist)|クレブス]]サイクルは、[[anaerobic respiration/ja|嫌気性呼吸]]または[[aerobic respiration/ja|好気性呼吸]]によってエネルギーを生成するために、[[Cellular respiration/ja|呼吸]]を行う[[organism/ja|生物]]([[Fermentation/ja|発酵]]を行う生物とは異なる)によって使用される。さらに、このサイクルは特定の[[amino acid/ja|アミノ酸]]の[[precursor (chemistry)/ja|前駆体]]、および[[reducing agent/ja|還元剤]]を供給する。[[nicotinamide adenine dinucleotide/ja|NADH]]を供給する。多くの[[Metabolic pathway/ja|生化学的経路]]における中心的な重要性は、それが[[metabolism/ja|代謝]]の最も初期の構成要素の一つであったことを示唆している。クエン酸サイクルは「サイクル」と呼ばれているが、[[metabolite/ja|代謝物]]が1つの特定の経路をたどる必要はない。


この代謝経路の名前は、消費された[[citric acid/ja|クエン酸]]([[tricarboxylic acid/ja|トリカルボン酸]]の一種で、生物学的pHではイオン化型が優勢であるため、しばしばクエン酸塩と呼ばれる)に由来し、サイクルを完成させるためにこの一連の反応によって再生される。サイクルは酢酸([[acetyl-CoA/ja|アセチル-CoA]]の形)と[[water/ja|水]]を消費し、NAD<sup>+</sup>をNADHに還元し、二酸化炭素を放出する。クエン酸サイクルによって生成されたNADHは[[oxidative phosphorylation/ja|酸化的リン酸化]](電子輸送)経路に供給される。これら2つの密接に結びついた経路の正味の結果は、[[nutrient/ja|栄養素]]を酸化して[[adenosine triphosphate/ja|ATP]]の形で使用可能な化学エネルギーを生成することである。
この代謝経路の名前は、消費された[[citric acid/ja|クエン酸]]([[tricarboxylic acid/ja|トリカルボン酸]]の一種で、生物学的pHではイオン化型が優勢であるため、しばしばクエン酸塩と呼ばれる)に由来し、サイクルを完成させるためにこの一連の反応によって再生される。サイクルは酢酸([[acetyl-CoA/ja|アセチル-CoA]]の形)と[[water/ja|水]]を消費し、NAD<sup>+</sup>をNADHに還元し、二酸化炭素を放出する。クエン酸サイクルによって生成されたNADHは[[oxidative phosphorylation/ja|酸化的リン酸化]](電子輸送)経路に供給される。これら2つの密接に結びついた経路の正味の結果は、[[nutrient/ja|栄養素]]を酸化して[[adenosine triphosphate/ja|ATP]]の形で使用可能な化学エネルギーを生成することである。
Line 30: Line 30:
* 各サイクルの終わりには、炭素数4の[[Oxaloacetic acid/ja|オキサロ酢酸]]が再生され、サイクルが継続される。
* 各サイクルの終わりには、炭素数4の[[Oxaloacetic acid/ja|オキサロ酢酸]]が再生され、サイクルが継続される。


<div class="mw-translate-fuzzy">
== ステップ ==
== ステップ ==
{{Anchor|Steps}}
{{Anchor|Steps}}
Line 79: Line 78:
|[[Alpha-ketoglutarate dehydrogenase/ja|α-ケトグルタル酸<br />デヒドロゲナーゼ]], [[Thiamine pyrophosphate/ja]], [[Lipoic acid/ja]], Mg++,トランスサクシニターゼ
|[[Alpha-ketoglutarate dehydrogenase/ja|α-ケトグルタル酸<br />デヒドロゲナーゼ]], [[Thiamine pyrophosphate/ja]], [[Lipoic acid/ja]], Mg++,トランスサクシニターゼ
|[[Succinyl-CoA/ja]] + [[Nicotinamide adenine dinucleotide/ja|NADH + H <sup>+</sup>]] + CO<sub>2</sub>
|[[Succinyl-CoA/ja]] + [[Nicotinamide adenine dinucleotide/ja|NADH + H <sup>+</sup>]] + CO<sub>2</sub>
|不可逆的な段階で[[Nicotinamide adenine dinucleotide/ja|NADH]]を生成 (ATP2.5分)、4C鎖を再生する(CoAは除く)。
|不可逆的な段階で[[Nicotinamide adenine dinucleotide/ja|NADH]]を生成 (ATP2.5分)、4C鎖を再生する(CoAは除く)。
|-
|-
|6
|6
Line 116: Line 115:
|これはステップ0と同じで、サイクルを再開する。この反応は不可逆的で、4Cのオキサロ酢酸を6Cの分子に拡張する。
|これはステップ0と同じで、サイクルを再開する。この反応は不可逆的で、4Cのオキサロ酢酸を6Cの分子に拡張する。
|}
|}
</div>


2つの[[carbon/ja|炭素]]原子が[[oxidation/ja|酸化]]されて[[carbon dioxide/ja|CO<sub>2</sub>]]になり、これらの反応から得られるエネルギーは[[Guanosine triphosphate/ja|GTP]](またはATP)を介して、また[[NADH/ja|NADH]]と[[Ubiquinol/ja|QH<sub>2</sub>]]の電子として他の代謝プロセスに伝達される。クエン酸サイクルで生成されたNADHは、後に[[oxidative phosphorylation/ja|酸化的リン酸化]]と呼ばれるプロセスの一種で、[[ATP synthase/ja|ATP合成]]を駆動するために酸化される(電子を供与する)ことがある。[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]は[[succinate dehydrogenase/ja|コハク酸デヒドロゲナーゼ]]に共有結合しており、クエン酸サイクルと酸化的リン酸化におけるミトコンドリアの[[electron transport chain/ja|電子輸送鎖]]の両方で機能する酵素である。したがって、FADH<sub>2</sub>は、コハク酸:ユビキノン酸化還元酵素複合体によって触媒される反応の最終電子受容体であり、[[electron transport chain/ja|電子伝達系]]の中間体としても働く[[coenzyme Q/ja|補酵素Q]]への電子伝達を促進する。
2つの[[carbon/ja|炭素]]原子が[[oxidation/ja|酸化]]されて[[carbon dioxide/ja|CO<sub>2</sub>]]になり、これらの反応から得られるエネルギーは[[Guanosine triphosphate/ja|GTP]](またはATP)を介して、また[[NADH/ja|NADH]]と[[Ubiquinol/ja|QH<sub>2</sub>]]の電子として他の代謝プロセスに伝達される。クエン酸サイクルで生成されたNADHは、後に[[oxidative phosphorylation/ja|酸化的リン酸化]]と呼ばれるプロセスの一種で、[[ATP synthase/ja|ATP合成]]を駆動するために酸化される(電子を供与する)ことがある。[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]は[[succinate dehydrogenase/ja|コハク酸デヒドロゲナーゼ]]に共有結合しており、クエン酸サイクルと酸化的リン酸化におけるミトコンドリアの[[electron transport chain/ja|電子輸送鎖]]の両方で機能する酵素である。したがって、FADH<sub>2</sub>は、コハク酸:ユビキノン酸化還元酵素複合体によって触媒される反応の最終電子受容体であり、[[electron transport chain/ja|電子伝達系]]の中間体としても働く[[coenzyme Q/ja|補酵素Q]]への電子伝達を促進する。
Line 130: Line 128:
サイクルの最初のターンの生成物は、1つの[[GTP cyclohydrolase I/ja|GTP]](または[[Adenosine triphosphate/ja|ATP]])、3つの[[Nicotinamide adenine dinucleotide/ja|NADH]]、1つの[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]、および2つの[[carbon dioxide/ja|CO<sub>2</sub>]]である。
サイクルの最初のターンの生成物は、1つの[[GTP cyclohydrolase I/ja|GTP]](または[[Adenosine triphosphate/ja|ATP]])、3つの[[Nicotinamide adenine dinucleotide/ja|NADH]]、1つの[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]、および2つの[[carbon dioxide/ja|CO<sub>2</sub>]]である。


<div lang="en" dir="ltr" class="mw-content-ltr">
1つの[[blucose/ja|グルコース]]分子から2つのアセチル-CoA[[molecules/ja|分子]]が生成されるため、グルコース1分子あたり2サイクルが必要となる。したがって、2サイクル終了時の生成物は、2つのGTP、6つのNADH、2つの[[Flavin adenine dinucleotide/ja|FADH<sub>2</sub>]]、4つの[[Carbon dioxide/ja|CO<sub>2</sub>]]である。
Because two acetyl-CoA [[molecules]] are produced from each [[glucose]] molecule, two cycles are required per glucose molecule. Therefore, at the end of two cycles, the products are: two GTP, six NADH, two [[Flavin adenine dinucleotide|FADH<sub>2</sub>]], and four [[Carbon dioxide|CO<sub>2</sub>]].
</div>


{| class="wikitable"
{| class="wikitable"