Translations:Potassium/19/en: Difference between revisions

From Azupedia
Jump to navigation Jump to search
FuzzyBot (talk | contribs)
Importing a new version from external source
Tags: Mobile edit Mobile web edit
 
(No difference)

Latest revision as of 10:13, 22 April 2024

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Potassium)
There are 25 known [[isotope]]s of potassium, three of which occur naturally: {{chem|39|K}} (93.3%), {{chem|40|K}} (0.0117%), and {{chem|41|K}} (6.7%) (by mole fraction). Naturally occurring [[potassium-40|{{chem|40|K}}]] has a [[half-life]] of {{val|1.250e9}} years. It decays to stable [[Argon|{{chem|40|Ar}}]] by [[electron capture]] or [[positron emission]] (11.2%) or to stable [[Calcium|{{chem|40|Ca}}]] by [[beta decay]] (88.8%). The decay of {{chem|40|K}} to {{chem|40|Ar}} is the basis of a common method for dating rocks. The conventional [[Potassium-argon dating|K-Ar dating method]] depends on the assumption that the rocks contained no argon at the time of formation and that all the subsequent radiogenic argon ({{chem|40|Ar}}) was quantitatively retained. [[Mineral]]s are dated by measurement of the concentration of potassium and the amount of radiogenic {{chem|40|Ar}} that has accumulated. The minerals best suited for dating include [[biotite]], [[muscovite]], [[metamorphic]] [[hornblende]], and volcanic [[feldspar]]; [[Petrography|whole rock]] samples from volcanic flows and shallow [[Igneous rock|instrusives]] can also be dated if they are unaltered. Apart from dating, potassium isotopes have been used as [[radioactive tracer|tracers]] in studies of [[weathering]] and for [[nutrient cycling]] studies because potassium is a [[macronutrient (ecology)|macronutrient]] required for [[life]] on Earth.

There are 25 known isotopes of potassium, three of which occur naturally: 39
K
(93.3%), 40
K
(0.0117%), and 41
K
(6.7%) (by mole fraction). Naturally occurring 40
K
has a half-life of 1.250×109 years. It decays to stable 40
Ar
by electron capture or positron emission (11.2%) or to stable 40
Ca
by beta decay (88.8%). The decay of 40
K
to 40
Ar
is the basis of a common method for dating rocks. The conventional K-Ar dating method depends on the assumption that the rocks contained no argon at the time of formation and that all the subsequent radiogenic argon (40
Ar
) was quantitatively retained. Minerals are dated by measurement of the concentration of potassium and the amount of radiogenic 40
Ar
that has accumulated. The minerals best suited for dating include biotite, muscovite, metamorphic hornblende, and volcanic feldspar; whole rock samples from volcanic flows and shallow instrusives can also be dated if they are unaltered. Apart from dating, potassium isotopes have been used as tracers in studies of weathering and for nutrient cycling studies because potassium is a macronutrient required for life on Earth.