Riboflavin/ja: Difference between revisions
Riboflavin/ja
Created page with "ヒトで用いられる指標は赤血球グルタチオン還元酵素(EGR)、赤血球フラビン濃度、尿中排泄物である。赤血球グルタチオン還元酵素活性係数'' (EGRAC)は、組織の飽和度と長期的なリボフラビン状態の指標となる。結果は活性係数比として表され、培養液にFADを添加した場合と添加しない場合の酵素活性によって決定さ..." |
Created page with "1935年、Paul Gyorgyは化学者Richard Kuhnと医師T. Wagner-Jaureggと共同で、B<sub>2</sub>を含まない餌で飼育したラットは体重が増加しないことを報告した。酵母からB<sub>2</sub>を単離したところ、明るい黄緑色の蛍光産物の存在が明らかになり、ラットに与えると正常な成長が回復した。回復した成長は蛍光の強さに正比例した。この観..." Tags: Mobile edit Mobile web edit |
||
(2 intermediate revisions by the same user not shown) | |||
Line 347: | Line 347: | ||
ヒトで用いられる指標は[[erythrocyte/ja|赤血球]][[glutathione reductase/ja|グルタチオン還元酵素]](EGR)、赤血球フラビン濃度、尿中排泄物である。赤血球グルタチオン還元酵素活性係数'' (EGRAC)は、組織の飽和度と長期的なリボフラビン状態の指標となる。結果は活性係数比として表され、培養液にFADを添加した場合と添加しない場合の酵素活性によって決定される。EGRACが1.0~1.2であれば、十分な量のリボフラビンが存在することを示し、1.2~1.4であれば低値、1.4より大きければ欠乏を示す。感度の低い「赤血球フラビン法」では、400nmol/Lを超えると十分量、270nmol/Lを下回ると欠乏とみなされる。 尿中排泄量は、[[creatinine/ja|クレアチニン]]1gあたりのリボフラビンnmolとして表される。低値は50~72nmol/gの範囲内と定義される。欠乏は50nmol/g未満である。食事所要量の決定には、尿中排泄負荷試験が用いられてきた。成人男性では、経口投与量が0.5 mgから1.1 mgに増加すると、尿中リボフラビンの緩やかな直線的増加がみられ、その後の24時間採尿で100マイクログラムに達した。1.1 mgの負荷量を超えると、尿中排泄量は急速に増加し、2.5 mgの投与量では、24時間採尿で尿量は800マイクログラムとなった。 | ヒトで用いられる指標は[[erythrocyte/ja|赤血球]][[glutathione reductase/ja|グルタチオン還元酵素]](EGR)、赤血球フラビン濃度、尿中排泄物である。赤血球グルタチオン還元酵素活性係数'' (EGRAC)は、組織の飽和度と長期的なリボフラビン状態の指標となる。結果は活性係数比として表され、培養液にFADを添加した場合と添加しない場合の酵素活性によって決定される。EGRACが1.0~1.2であれば、十分な量のリボフラビンが存在することを示し、1.2~1.4であれば低値、1.4より大きければ欠乏を示す。感度の低い「赤血球フラビン法」では、400nmol/Lを超えると十分量、270nmol/Lを下回ると欠乏とみなされる。 尿中排泄量は、[[creatinine/ja|クレアチニン]]1gあたりのリボフラビンnmolとして表される。低値は50~72nmol/gの範囲内と定義される。欠乏は50nmol/g未満である。食事所要量の決定には、尿中排泄負荷試験が用いられてきた。成人男性では、経口投与量が0.5 mgから1.1 mgに増加すると、尿中リボフラビンの緩やかな直線的増加がみられ、その後の24時間採尿で100マイクログラムに達した。1.1 mgの負荷量を超えると、尿中排泄量は急速に増加し、2.5 mgの投与量では、24時間採尿で尿量は800マイクログラムとなった。 | ||
==歴史== | |||
{{Anchor|History}} | |||
リボフラビン」という名前は、「[[ribose/ja|リボース]]」([[reduction (chemistry)/ja|還元]]型である[[ribitol/ja|リビトール]]が構造の一部を形成する糖)と、酸化型分子に黄色を与える環状部分である「[[Flavin group/ja|フラビン]]」(ラテン語の''flavus''「黄色」に由来する)に由来する。還元型は、酸化型と一緒に代謝され、橙黄色の針状または結晶として現れる。ビタミンが必須栄養素であるという概念よりも前に、最も早く同定が報告されたのは、アレクサンダー・ウィンター・ブライスである。1879年、ブライスは牛乳の乳清に含まれる水溶性の成分を単離し、それを「ラクトクロム」と名付けた。 | |||
1900年代初頭、いくつかの研究所では、ラットの成長維持に不可欠な食品の成分を調査していた。ビタミンBはさらに、B<sub>1</sub>と呼ばれる熱に不安定な物質と、B<sub>2</sub>と呼ばれる熱に不安定な物質の2つの成分があると考えられていた。ビタミンB<sub>2</sub>が[[pellagra/ja|ペラグラ]]の予防に必要な因子であることが仮に確認されたが、それは後に[[Niacin (nutrient)/ja|ナイアシン]](ビタミンB<sub>3</sub>)の欠乏によるものであることが確認された。この混乱は、リボフラビン(B<sub>2</sub>)の欠乏がペラグラに見られるものと似た[[stomatitis/ja|口内炎]]の症状を引き起こすが、広範な末梢の皮膚病変を伴わないという事実によるものであった。このため、ヒトのリボフラビン欠乏症が発見された初期には、この病態は「ペラグラ・シネ・ペラグラ」(ペラグラのないペラグラ)と呼ばれることもあった。 | |||
1935年、[[:en:Paul Gyorgy|Paul Gyorgy]]は化学者[[:en:Richard Kuhn|Richard Kuhn]]と医師T. Wagner-Jaureggと共同で、B<sub>2</sub>を含まない餌で飼育したラットは体重が増加しないことを報告した。酵母からB<sub>2</sub>を単離したところ、明るい黄緑色の蛍光産物の存在が明らかになり、ラットに与えると正常な成長が回復した。回復した成長は蛍光の強さに正比例した。この観察により、研究者たちは1933年に迅速な化学的バイオアッセイ法を開発し、卵白からこの因子を単離し、オボフラビンと名づけた。その後、同じグループが乳清から同様の製剤を単離し、ラクトフラビンと呼んだ。1934年、クーンのグループはこれらのフラビンの化学構造が同一であることを突き止め、名称を「リボフラビン」に決定した。 | |||
1937年頃、リボフラビンは「ビタミンG」とも呼ばれていた。1938年、Richard KuhnはB<sub>2</sub>とB<sub>6</sub>を含むビタミンの研究で[[:en:Nobel Prize in Chemistry|ノーベル化学賞]]を受賞した。1939年、William H. SebrellとRoy E. Butlerが行った臨床試験により、リボフラビンが人間の健康に不可欠であることが確認された。リボフラビンの少ない食事を与えられた女性は口内炎やその他の欠乏症状を呈したが、合成リボフラビンで治療すると症状は回復した。サプリメントを中止すると症状は再発した。 | |||