Translations:Metabolism/60/en: Difference between revisions

From Azupedia
Jump to navigation Jump to search
FuzzyBot (talk | contribs)
Importing a new version from external source
 
(No difference)

Latest revision as of 19:27, 22 January 2024

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Metabolism)
A very well understood example of extrinsic control is the regulation of glucose metabolism by the hormone [[insulin]]. Insulin is produced in response to rises in [[blood sugar|blood glucose levels]]. Binding of the hormone to [[insulin receptor]]s on cells then activates a cascade of [[protein kinase]]s that cause the cells to take up glucose and convert it into storage molecules such as fatty acids and [[glycogen]]. The metabolism of glycogen is controlled by activity of [[phosphorylase]], the enzyme that breaks down glycogen, and [[glycogen synthase]], the enzyme that makes it. These enzymes are regulated in a reciprocal fashion, with phosphorylation inhibiting glycogen synthase, but activating phosphorylase. Insulin causes glycogen synthesis by activating [[phosphatase|protein phosphatases]] and producing a decrease in the phosphorylation of these enzymes.

A very well understood example of extrinsic control is the regulation of glucose metabolism by the hormone insulin. Insulin is produced in response to rises in blood glucose levels. Binding of the hormone to insulin receptors on cells then activates a cascade of protein kinases that cause the cells to take up glucose and convert it into storage molecules such as fatty acids and glycogen. The metabolism of glycogen is controlled by activity of phosphorylase, the enzyme that breaks down glycogen, and glycogen synthase, the enzyme that makes it. These enzymes are regulated in a reciprocal fashion, with phosphorylation inhibiting glycogen synthase, but activating phosphorylase. Insulin causes glycogen synthesis by activating protein phosphatases and producing a decrease in the phosphorylation of these enzymes.