Translations:Lactobacillus acidophilus/8/en
Environment

L. acidophilus grows naturally in the oral, intestinal, and vaginal cavities of mammals. Nearly all Lactobacillus species have special mechanisms for heat resistance which involves enhancing the activity of chaperones. Chaperones are highly conserved stress proteins that allow for enhanced resistance to elevated temperatures, ribosome stability, temperature sensing, and control of ribosomal function at high temperatures. This ability to function at high temperatures is extremely important to cell yield during the fermentation process, and genetic testing on L. acidophilus in order to increase its temperature tolerance is currently being done. When being considered as a probiotic, it is important for L. acidophilus to have traits suitable for life in the gastrointestinal tract. Tolerance of low pH and high toxicity levels are often required. These traits vary and are strain specific. Mechanisms by which these tolerances are expressed include differences in cell wall structure, along with other changes is protein expression. Changes in salt concentration have been shown to affect L. acidophilus viability, but only after exposure to higher salt concentrations. In another experiment highlighted by the American Dairy Science Association, viable cell counts only showed a significant reduction after exposure to NaCl concentrations of 7.5% or higher. Cells were also observed to distinctly elongate when grown in conditions of 10% NaCl concentration or higher. L. acidophilus is also very well suited for living in a dairy medium, as fermented milk is the ideal method of delivery for introducing L. acidophilus into a gut microbiome. The viability of L. acidophilus cells encapsulated by spray drying technology stored at refrigerated condition (4 °C) is higher than the viability of cells stored at room temperature (25 °C).