Translations:Climate change mitigation/85/en

Among the most viable carbon dioxide removal methods considered alongside solar radiation modification, biochar soil amendment is already being deployed commercially. Studies indicate that the carbon it contains remains stable in soils for centuries, giving it a durable potential of removing gigatonnes of CO2 per year. Expert assessments place the net cost of removing CO2 with biochar between US$30 and $120 per tonne. Market data show that biochar supplied 94% of all durable CDR credits delivered in 2023, demonstrating current scalability. Stratospheric aerosol injection (SAI), by comparison, could reduce global temperature quickly by dispersing sulfate aerosols in the stratosphere; however, deployment at climatically relevant scale would require the design and certification of a new fleet of high‑altitude aircraft, a process estimated to take a decade or more, and ongoing operating costs of about US$18 billion for each degree Celsius of cooling. While models confirm that SAI would lower global mean temperature, there are potential side effect including ozone depletion, altered regional precipitation patterns, and the risk of a sudden "termination shock" warming if the programme were interrupted. These systemic risks are absent from biochar deployment.