Translations:Inulin/7/en: Difference between revisions

From Azupedia
Jump to navigation Jump to search
FuzzyBot (talk | contribs)
Importing a new version from external source
 
(No difference)

Latest revision as of 09:34, 23 November 2023

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Inulin)
Because of the β(2,1) linkages, inulin is not digested by enzymes in the [[Human digestive system|human alimentary system]], contributing to its functional properties: reduced calorie value, dietary fiber, and [[prebiotic (nutrition)|prebiotic]] effects. Without color and odor, it has little impact on sensory characteristics of food products. [[Oligofructose]] has 35% of the sweetness of [[sucrose]], and its sweetening profile is similar to sugar. Standard inulin is slightly sweet, while high-performance inulin is not. Its solubility is higher than the classical fibers. When thoroughly mixed with liquid, inulin forms a gel and a white creamy structure, which is similar to fat. Its three-dimensional gel network, consisting of insoluble submicron crystalline inulin particles, immobilizes a large amount of water, assuring its physical stability. It can also improve the stability of foams and emulsions.

Because of the β(2,1) linkages, inulin is not digested by enzymes in the human alimentary system, contributing to its functional properties: reduced calorie value, dietary fiber, and prebiotic effects. Without color and odor, it has little impact on sensory characteristics of food products. Oligofructose has 35% of the sweetness of sucrose, and its sweetening profile is similar to sugar. Standard inulin is slightly sweet, while high-performance inulin is not. Its solubility is higher than the classical fibers. When thoroughly mixed with liquid, inulin forms a gel and a white creamy structure, which is similar to fat. Its three-dimensional gel network, consisting of insoluble submicron crystalline inulin particles, immobilizes a large amount of water, assuring its physical stability. It can also improve the stability of foams and emulsions.