Translations:Potassium/24/en: Difference between revisions

From Azupedia
Jump to navigation Jump to search
FuzzyBot (talk | contribs)
Importing a new version from external source
Tags: Mobile edit Mobile web edit
 
(No difference)

Latest revision as of 10:13, 22 April 2024

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Potassium)
Because of the sensitivity of potassium to water and air, [[air-free technique]]s are normally employed for handling the element. It is unreactive toward nitrogen and saturated hydrocarbons such as mineral oil or [[kerosene]]. It readily dissolves in liquid [[ammonia]], up to 480 g per 1000 g of ammonia at 0{{nbsp}}°C. Depending on the concentration, the ammonia solutions are blue to yellow, and their electrical conductivity is similar to that of liquid metals. Potassium slowly reacts with ammonia to form [[Potassium amide|{{chem|KNH|2}}]], but this reaction is accelerated by minute amounts of transition metal salts. Because it can reduce the [[salts]] to the metal, potassium is often used as the reductant in the preparation of finely divided metals from their salts by the [[Rieke metal|Rieke method]]. Illustrative is the preparation of magnesium:

Because of the sensitivity of potassium to water and air, air-free techniques are normally employed for handling the element. It is unreactive toward nitrogen and saturated hydrocarbons such as mineral oil or kerosene. It readily dissolves in liquid ammonia, up to 480 g per 1000 g of ammonia at 0 °C. Depending on the concentration, the ammonia solutions are blue to yellow, and their electrical conductivity is similar to that of liquid metals. Potassium slowly reacts with ammonia to form KNH
2
, but this reaction is accelerated by minute amounts of transition metal salts. Because it can reduce the salts to the metal, potassium is often used as the reductant in the preparation of finely divided metals from their salts by the Rieke method. Illustrative is the preparation of magnesium: