Translations:Metabolism/50/en: Difference between revisions

From Azupedia
Jump to navigation Jump to search
FuzzyBot (talk | contribs)
Importing a new version from external source
 
(No difference)

Latest revision as of 19:27, 22 January 2024

Information about message (contribute)
This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.
Message definition (Metabolism)
[[Terpene]]s and [[terpenoid|isoprenoids]] are a large class of lipids that include the [[carotenoid]]s and form the largest class of plant [[natural product]]s. These compounds are made by the assembly and modification of [[isoprene]] units donated from the reactive precursors [[isopentenyl pyrophosphate]] and [[dimethylallyl pyrophosphate]]. These precursors can be made in different ways. In animals and archaea, the [[mevalonate pathway]] produces these compounds from acetyl-CoA, while in plants and bacteria the [[non-mevalonate pathway]] uses pyruvate and [[glyceraldehyde 3-phosphate]] as substrates. One important reaction that uses these activated isoprene donors is [[steroid biosynthesis|sterol biosynthesis]]. Here, the isoprene units are joined to make [[squalene]] and then folded up and formed into a set of rings to make [[lanosterol]]. Lanosterol can then be converted into other sterols such as [[cholesterol]] and [[ergosterol]].

Terpenes and isoprenoids are a large class of lipids that include the carotenoids and form the largest class of plant natural products. These compounds are made by the assembly and modification of isoprene units donated from the reactive precursors isopentenyl pyrophosphate and dimethylallyl pyrophosphate. These precursors can be made in different ways. In animals and archaea, the mevalonate pathway produces these compounds from acetyl-CoA, while in plants and bacteria the non-mevalonate pathway uses pyruvate and glyceraldehyde 3-phosphate as substrates. One important reaction that uses these activated isoprene donors is sterol biosynthesis. Here, the isoprene units are joined to make squalene and then folded up and formed into a set of rings to make lanosterol. Lanosterol can then be converted into other sterols such as cholesterol and ergosterol.